材料科学
变形
气凝胶
陶瓷
可伸缩电子设备
复合材料
热的
热保护
超材料
纳米技术
光电子学
数码产品
气象学
化学
计算机视觉
物理化学
物理
计算机科学
作者
Xuan Zhang,Jianyong Yu,Yang Si
标识
DOI:10.1002/adma.202412962
摘要
Abstract Ceramic aerogels hold significant potential for thermal insulation, yet their mechanical stretchability and thermal stability fall short in extreme environments. Here, the study presents a programmable shape‐morphing strategy aimed at engineering a binary network topology structure within ceramic aerogels to effectively dissipate stress and block heat transfer. The special topology design, which includes kirigami lamellated aerogels for bearing loading stress and randomly assembled aerogels for mechanical energy pre‐storage to transfer tensile stress, effectively achieves unexpected mechanical tensile properties and thermal stability. The resulting robust meta‐aerogels demonstrate remarkable structural stability with topology‐derived mechanical tensile of up to 85% strain, excellent resilience to 500 cycles of 50% tensile strain, 1000 cycles of 60% buckling strain, and 500 cycles of 50% compressive strain, temperature‐invariant tensile recovery capability; simultaneously, low thermal conductivity of 33.01 mW m −1 K −1 and tensile‐invariant thermal insulation makes the ceramic meta‐aerogels an ideal substitute material for various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI