Guidelines International Network: Principles for Use of Artificial Intelligence in the Health Guideline Enterprise

医学 指南 管理科学 病理 工程类
作者
Bernardo Sousa‐Pinto,Manuel Marques‐Cruz,Ignacio Neumann,Yuan Chi,Artur Nowak,Marge Reinap,Mariette Awad,Monika Nothacker,Milana Trucl,Jan Brożek,Pablo Alonso‐Coello,Wojtek Wiercioch,Amir Qaseem,Elie A. Akl,Holger J. Schünemann,Zachary Munn,Lubna El-Ansary,I. Kopp,Miranda Langendam,Roberta James
出处
期刊:Annals of Internal Medicine [American College of Physicians]
标识
DOI:10.7326/annals-24-02338
摘要

Artificial intelligence (AI) has been defined by the High-Level Expert Group on AI of the European Commission as "systems that display intelligent behaviour by analysing their environment and taking actions-with some degree of autonomy-to achieve specific goals." Artificial intelligence has the potential to support guideline planning, development and adaptation, reporting, implementation, impact evaluation, certification, and appraisal of recommendations, which we will refer to as "guideline enterprise." Considering this potential, as well as the lack of guidance for the use of AI in guidelines, the Guidelines International Network (GIN) proposes a set of principles for the development and use of AI tools or processes to support the health guideline enterprise. A GIN working group on AI developed these principles, informed by the results of a scoping review and practical examples, through iterative discussion. Eight principles were identified to adhere to when using AI in the guideline context: transparency, preplanning, additionality, credibility, ethics, accountability, compliance, and evaluation. These complementary principles are described in a comprehensive way, but they do not provide detailed instructions on how to use specific AI tools. Although these principles are expected to apply across different contexts and stages of the guideline enterprise, details on their implementation have some degree of flexibility. Guideline development groups choosing to use AI will be able to adequately implement the principles if they ensure aspects such as structured reporting on the use of AI tools, involvement of experts in AI, and allocation of funding for the adequate use of AI tools. The GIN principles may support guideline developers in the responsible and transparent use of AI to ensure trustworthy guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx77完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
1秒前
denity关注了科研通微信公众号
2秒前
2秒前
爱吃泡芙发布了新的文献求助10
4秒前
科研通AI5应助稀饭采纳,获得10
4秒前
4秒前
祺王862完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
7秒前
7秒前
7秒前
慕青应助左丘傲菡采纳,获得30
8秒前
8秒前
二零完成签到,获得积分20
9秒前
尼大王完成签到,获得积分10
9秒前
李爱国应助风中的致远采纳,获得10
9秒前
踏实口红完成签到,获得积分10
9秒前
10秒前
WENc完成签到,获得积分10
10秒前
konghuihui发布了新的文献求助30
10秒前
Dany完成签到,获得积分10
11秒前
他山之石完成签到 ,获得积分10
11秒前
在水一方应助科研达人采纳,获得10
11秒前
11秒前
顺利静竹发布了新的文献求助10
11秒前
pyc完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
稀饭发布了新的文献求助10
14秒前
14秒前
研友_VZG7GZ应助INGRID采纳,获得30
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267