Intra- and Inter-Head Orthogonal Attention for Image Captioning

隐藏字幕 计算机科学 人工智能 计算机视觉 主管(地质) 图像(数学) 图像处理 模式识别(心理学) 语音识别 地貌学 地质学
作者
Xiaodan Zhang,Aozhe Jia,Junzhong Ji,Liangqiong Qu,Qixiang Ye
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 594-607
标识
DOI:10.1109/tip.2025.3528216
摘要

Multi-head attention (MA), which allows the model to jointly attend to crucial information from diverse representation subspaces through its heads, has yielded remarkable achievement in image captioning. However, there is no explicit mechanism to ensure MA attends to appropriate positions in diverse subspaces, resulting in overfocused attention for each head and redundancy between heads. In this paper, we propose a novel Intra- and Inter-Head Orthogonal Attention (I2OA) to efficiently improve MA in image captioning by introducing a concise orthogonal regularization to heads. Specifically, Intra-Head Orthogonal Attention enhances the attention learning of MA by introducing orthogonal constraint to each head, which decentralizes the object-centric attention to more comprehensive content-aware attention. Inter-Head Orthogonal Attention reduces the heads redundancy by applying orthogonal constraint between heads, which enlarges the diversity of representation subspaces and improves the representation ability for MA. Moreover, the proposed I2OA is flexible to combine with various multi-head attention based image captioning methods and improve the performances without increasing model complexity and parameters. Experiments on the MS COCO dataset demonstrate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
t6yur发布了新的文献求助10
2秒前
李爱国应助alooof采纳,获得10
2秒前
Shelby完成签到,获得积分10
3秒前
jetlee完成签到 ,获得积分10
3秒前
Shelby发布了新的文献求助10
4秒前
bob发布了新的文献求助10
4秒前
华仔应助暴走采纳,获得10
5秒前
BowieHuang应助嘎嘎的鸡神采纳,获得10
6秒前
星星完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
辛勤代梅发布了新的文献求助10
8秒前
秋风完成签到,获得积分20
9秒前
优雅山柏发布了新的文献求助20
9秒前
12秒前
14秒前
14秒前
马凯鹏完成签到,获得积分10
16秒前
16秒前
bob完成签到,获得积分10
16秒前
17秒前
研友_Z1xNWn完成签到,获得积分10
17秒前
17秒前
CipherSage应助Sichen孟采纳,获得10
19秒前
20秒前
21秒前
七七完成签到 ,获得积分10
21秒前
21秒前
科目三应助科研通管家采纳,获得10
22秒前
蓝天应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得30
22秒前
22秒前
科目三应助科研通管家采纳,获得10
22秒前
22秒前
zhoucanshang发布了新的文献求助10
22秒前
蓝天应助科研通管家采纳,获得10
22秒前
22秒前
大模型应助科研通管家采纳,获得30
22秒前
zm应助科研通管家采纳,获得10
22秒前
22秒前
BowieHuang应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799370
求助须知:如何正确求助?哪些是违规求助? 5799235
关于积分的说明 15499826
捐赠科研通 4925783
什么是DOI,文献DOI怎么找? 2651643
邀请新用户注册赠送积分活动 1598701
关于科研通互助平台的介绍 1553583