材料科学
金属锂
表征(材料科学)
锂(药物)
复合数
电解质
纳米技术
聚合物电解质
固态
聚合物
快离子导体
复合材料
工程物理
电极
离子电导率
物理化学
医学
化学
内分泌学
工程类
作者
Haiping He,Nanping Deng,Xiaoyin Wang,Lu Gao,Chak Yin Tang,Enjie Wu,Jin‐Tao Ren,Xianbo Yang,Nan Feng,Daqiang Gao,Xupin Zhuang
标识
DOI:10.1002/adfm.202421670
摘要
Abstract Solid composite electrolytes (SCEs) composed of functional fillers and solid polymer electrolytes (SPEs) can overcome some shortcomings of single‐phase and combine some advantages of each component, and are considered as high‐performance solid‐state electrolytes (SSEs) candidates for assembling solid‐state lithium metal batteries (SSLMBs) with high safety and high energy density. In recent years, due to high designability of metal–organic frameworks (MOFs), MOFs/polymer composite electrolytes (MPCEs) have become a highly promising novel type of SCEs. Based on the above content, this article first describes the composition and mechanism of action of MPCEs, followed by a discussion on typical fabrication methods for MPCEs. In addition, the mechanisms of unmodified neat MOFs in improving performance for SSEs and enhancing interface stability are presented in detail, with a focus on the design strategies of MOFs and their applications in MPCEs, including dimensional design, ligand design, IL@MOFs design, and hybrid design. Finally, a thorough analysis is conducted on the current challenges faced by MPCEs, and corresponding future development directions are proposed. This review presents a comprehensive, systematic, and easily understandable analysis of the application and mechanism of action of different MOFs designs in MPCEs, providing a new perspective for researchers to study high‐performance SSEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI