Novel Strategies for the Treatment of Lung Cancer: An In-depth Analysis of the Use of Immunotherapy, Precision Medicine, and Artificial Intelligence to Improve Prognoses

免疫疗法 肺癌 精密医学 医学 癌症 癌症治疗 医学物理学 重症监护医学 肿瘤科 人工智能 内科学 计算机科学 病理
作者
Pawan Kedar,Sankha Bhattacharya,Abhishek Kanugo,Bhupendra G. Prajapati
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:32 被引量:1
标识
DOI:10.2174/0109298673347323241119184648
摘要

Abstract: Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival. In the fight against cancer, immunotherapy has demonstrated encouraging results, especially in cases of small cell lung cancer [SCLC] and non-small cell lung cancer [NSCLC]. A key component in improving T cell responses against tumours is the use of immune checkpoint inhibitors, which include PD-1/PD-L1 and CTLA-4 blockers. Cancer vaccines and CAR T-cell therapy are two examples of adoptive cell therapies that might be used to boost the immune system's ability to eliminate tumours. In order to improve surgical results and decrease recurrence, neoadjuvant immunotherapy is being investigated for its ability to preoperatively reduce tumours. Precision medicine tailors treatment based on individual genetic profiles and tumour features, boosting therapeutic efficacy and avoiding unwanted effects. For certain types of non-small cell lung cancer [NSCLC], targeted treatments based on mutations in genes including EGFR, ALK, and ROS1 have shown excellent results. When it comes to optimizing treatment regimens, biomarker-driven approaches guarantee that the patients most likely to benefit from particular medicines are selected. Artificial intelligence [AI] is revolutionizing lung cancer care through increased diagnostic accuracy, prognostic assessments, and therapy planning. Machine learning algorithms examine enormous information to detect trends and forecast outcomes, permitting individualized treatment techniques. AI-driven imaging tools enable early diagnosis and monitoring of disease progression, while predictive models assist in evaluating therapy responses and potential toxicity. The convergence of these advanced technologies holds promise for overcoming the constraints of conventional therapy. Combining immunotherapy with targeted treatments and utilizing AI for precision medicine delivers a multimodal approach that tackles the heterogeneous and dynamic nature of lung cancer. The incorporation of these new tactics into clinical practice demands cross-disciplinary collaboration and continuing study to develop and confirm their effectiveness. The synergistic application of immunotherapy, precision medicine, and AI constitutes a paradigm shift in lung cancer management. These discoveries provide a robust basis for individualized and adaptable therapy, potentially altering the prognosis for lung cancer patients. Ongoing research and clinical studies are vital to unlocking the full potential of these technologies, paving the way for enhanced therapeutic outcomes and improved quality of life for people battling this tough disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武工队队长石青山完成签到,获得积分10
1秒前
张狗蛋发布了新的文献求助30
1秒前
Ultraviolet发布了新的文献求助10
3秒前
zhouyan完成签到,获得积分10
3秒前
3秒前
叶子完成签到,获得积分10
3秒前
3秒前
AMAME12发布了新的文献求助10
4秒前
打打应助严笑容采纳,获得30
4秒前
喜悦的莹发布了新的文献求助10
7秒前
在水一方应助积极乐安采纳,获得10
7秒前
7秒前
8秒前
nn完成签到,获得积分10
8秒前
山河完成签到,获得积分10
9秒前
10秒前
AMAME12完成签到,获得积分10
11秒前
汉堡包应助IRONY采纳,获得10
12秒前
Ultraviolet发布了新的文献求助10
13秒前
NexusExplorer应助nn采纳,获得10
13秒前
lee发布了新的文献求助10
13秒前
AsingOne发布了新的文献求助10
14秒前
赘婿应助ch采纳,获得10
16秒前
16秒前
喜悦的莹完成签到,获得积分10
17秒前
18秒前
18秒前
zgzz完成签到 ,获得积分10
19秒前
完美世界应助咕噜采纳,获得10
20秒前
21秒前
21秒前
包容盼山发布了新的文献求助10
23秒前
细腻的宫二完成签到,获得积分10
24秒前
蓝桉发布了新的文献求助10
24秒前
积极乐安发布了新的文献求助10
24秒前
ll完成签到,获得积分10
25秒前
Ultraviolet发布了新的文献求助10
26秒前
29秒前
30秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792