Novel Strategies for the Treatment of Lung Cancer: An In-depth Analysis of the Use of Immunotherapy, Precision Medicine, and Artificial Intelligence to Improve Prognoses

免疫疗法 肺癌 精密医学 医学 癌症 癌症治疗 医学物理学 重症监护医学 肿瘤科 人工智能 内科学 计算机科学 病理
作者
Pawan Kedar,Sankha Bhattacharya,Abhishek Kanugo,Bhupendra G. Prajapati
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:32
标识
DOI:10.2174/0109298673347323241119184648
摘要

Abstract: Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival. In the fight against cancer, immunotherapy has demonstrated encouraging results, especially in cases of small cell lung cancer [SCLC] and non-small cell lung cancer [NSCLC]. A key component in improving T cell responses against tumours is the use of immune checkpoint inhibitors, which include PD-1/PD-L1 and CTLA-4 blockers. Cancer vaccines and CAR T-cell therapy are two examples of adoptive cell therapies that might be used to boost the immune system's ability to eliminate tumours. In order to improve surgical results and decrease recurrence, neoadjuvant immunotherapy is being investigated for its ability to preoperatively reduce tumours. Precision medicine tailors treatment based on individual genetic profiles and tumour features, boosting therapeutic efficacy and avoiding unwanted effects. For certain types of non-small cell lung cancer [NSCLC], targeted treatments based on mutations in genes including EGFR, ALK, and ROS1 have shown excellent results. When it comes to optimizing treatment regimens, biomarker-driven approaches guarantee that the patients most likely to benefit from particular medicines are selected. Artificial intelligence [AI] is revolutionizing lung cancer care through increased diagnostic accuracy, prognostic assessments, and therapy planning. Machine learning algorithms examine enormous information to detect trends and forecast outcomes, permitting individualized treatment techniques. AI-driven imaging tools enable early diagnosis and monitoring of disease progression, while predictive models assist in evaluating therapy responses and potential toxicity. The convergence of these advanced technologies holds promise for overcoming the constraints of conventional therapy. Combining immunotherapy with targeted treatments and utilizing AI for precision medicine delivers a multimodal approach that tackles the heterogeneous and dynamic nature of lung cancer. The incorporation of these new tactics into clinical practice demands cross-disciplinary collaboration and continuing study to develop and confirm their effectiveness. The synergistic application of immunotherapy, precision medicine, and AI constitutes a paradigm shift in lung cancer management. These discoveries provide a robust basis for individualized and adaptable therapy, potentially altering the prognosis for lung cancer patients. Ongoing research and clinical studies are vital to unlocking the full potential of these technologies, paving the way for enhanced therapeutic outcomes and improved quality of life for people battling this tough disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TL发布了新的文献求助10
刚刚
chx2256120完成签到,获得积分10
1秒前
劲秉应助迷路的夏云采纳,获得10
1秒前
Toey发布了新的文献求助10
1秒前
开心的眼睛完成签到,获得积分10
2秒前
2秒前
3秒前
活力亦瑶发布了新的文献求助20
5秒前
5秒前
chen应助kiwi采纳,获得80
5秒前
yj1506837246发布了新的文献求助10
8秒前
8秒前
8秒前
无聊的寒梅完成签到,获得积分20
9秒前
复杂的天玉完成签到,获得积分10
9秒前
慕青应助xhh采纳,获得30
10秒前
居居子完成签到,获得积分10
10秒前
希光光发布了新的文献求助10
10秒前
10秒前
cc发布了新的文献求助10
11秒前
somls发布了新的文献求助10
12秒前
12秒前
Toey完成签到,获得积分10
13秒前
thangxtz完成签到,获得积分10
13秒前
咖啡不加冰完成签到,获得积分10
13秒前
小四月完成签到,获得积分10
17秒前
萨阿呢完成签到,获得积分10
17秒前
tq应助yj1506837246采纳,获得10
17秒前
万能图书馆应助噜啊噜采纳,获得10
18秒前
安静香发布了新的文献求助10
18秒前
瑾木完成签到,获得积分10
18秒前
图图发布了新的文献求助30
20秒前
turbo发布了新的文献求助10
21秒前
笨笨行云完成签到,获得积分10
21秒前
搜集达人应助somls采纳,获得10
22秒前
22秒前
耍酷抽屉发布了新的文献求助10
22秒前
学霸宇大王完成签到,获得积分10
23秒前
23秒前
黄紫红完成签到 ,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351649
求助须知:如何正确求助?哪些是违规求助? 2977118
关于积分的说明 8677840
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664503