End-point carbon content correction in converter steelmaking based on the Kalman filter and CBR model

炼钢 卡尔曼滤波器 内容(测量理论) 点(几何) 滤波器(信号处理) 碳纤维 计算机科学 数学 控制理论(社会学) 算法 人工智能 冶金 材料科学 计算机视觉 数学分析 几何学 控制(管理) 复合数
作者
Yi Kang,Yongguang Tan,Junxue Zhao,Kai Yang,Wénwén Liú,Shen Yue
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241303546
摘要

End-point carbon content at converter is one of significant indicators of end point control. While the bomb-dropping measurement technology can realise quick and effective measurement of end-point carbon content, it is difficult to achieve accurate end-point control due to its lower detection accuracy compared to other methods. Herein, a method was established for correcting the bomb-dropping measurement of end-point carbon content in converter steelmaking to improve its measurement accuracy, thus further achieve cost reduction and efficiency enhancement in converter production. Historical production data and Case-based Reasoning (CBR) model were adopted to establish the prediction model of end-point carbon content and Kalman filtering (KF) was used to fuse CBR model prediction and bomb-dropping measurement to get more accurate end-point carbon content of converter. Through data analysis and on-site tracking and sampling, the validity of correction was thus verified. Experiments showed that: the optimal ratio of the size of training set to test set of CBR prediction model was 95:5 and the optimal Weighting Number was 9; CBR model's average prediction error was 0.019%, bomb-dropping measurement's average error was 0.029% and the average error after KF fusion was 0.014%. The carbon content accuracy was improved by KF fusion by 51.7% compared with that of the original bomb-dropping measurement. Corrected end-point carbon content presented a more typical normal distribution. This method could reduce the measurement error in bomb-dropping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助10
1秒前
Ava应助土里刨星星的鱼采纳,获得10
3秒前
欢呼冰岚完成签到,获得积分10
3秒前
大王卡发布了新的文献求助30
3秒前
凝子老师发布了新的文献求助10
3秒前
优雅海雪发布了新的文献求助10
5秒前
5秒前
正在获取昵称中...完成签到,获得积分10
7秒前
研白完成签到 ,获得积分10
8秒前
蜜雪冰城完成签到,获得积分10
8秒前
狂歌痛饮空度日完成签到,获得积分10
9秒前
隐形曼青应助侦察兵采纳,获得10
9秒前
欢呼冰岚发布了新的文献求助50
10秒前
陵铛铛铛发布了新的文献求助10
10秒前
搜集达人应助caoyy采纳,获得10
10秒前
YYJ25发布了新的文献求助10
11秒前
勤劳落雁发布了新的文献求助30
12秒前
科研通AI5应助优雅海雪采纳,获得10
12秒前
loulan完成签到,获得积分10
13秒前
orixero应助yyyyy语言采纳,获得10
15秒前
土里刨星星的鱼完成签到,获得积分20
15秒前
Ava应助sun采纳,获得30
17秒前
miss完成签到,获得积分10
18秒前
hu完成签到 ,获得积分10
19秒前
mathmotive完成签到,获得积分10
20秒前
白大褂完成签到,获得积分10
21秒前
21秒前
21秒前
小马甲应助孙淳采纳,获得10
23秒前
23秒前
科研通AI5应助二二二采纳,获得10
23秒前
赘婿应助尘林采纳,获得10
24秒前
HPP123完成签到,获得积分10
26秒前
27秒前
YYJ25发布了新的文献求助10
28秒前
liyuchen发布了新的文献求助10
28秒前
侦察兵发布了新的文献求助10
28秒前
30秒前
Owen应助TT采纳,获得10
30秒前
kid1912发布了新的文献求助50
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849