多硫化物
材料科学
锂(药物)
硫黄
异质结
锂硫电池
无机化学
化学工程
纳米技术
物理化学
光电子学
电化学
冶金
化学
电极
医学
工程类
电解质
内分泌学
作者
Xing Ye,Fang Wu,Zhiyu Xue,Haowei Yuan,Shijie Mei,Jiannong Wang,Ruizhe Yang,Xiaomeng Wu,Xiaoli Zhao,Hong Pan,Qinyong Zhang,Yong Xiang,Ming Huang,Fei Li
标识
DOI:10.1002/adfm.202417776
摘要
Abstract Lithium–sulfur (Li–S) batteries are considered as potential candidates for future‐oriented energy storage systems. However, their practical deployment is hampered by the shuttle effect and the sluggish reaction kinetics of lithium polysulfides (LiPSs). A key strategy to mitigate these challenges is to develop efficient heterojunction catalysts to enhance reaction kinetics and suppress the shuttle effect. In this study, a NiS 2 ‐CoS 2 heterojunction is introduced to address these challenges with density functional theory (DFT) calculations employed to determine the optimal combination from 5 × 5 crystal plane configurations. The identified NiS 2 (210)‐CoS 2 (200) combination demonstrates excellent anchoring effects and catalytic properties for LiPSs, significantly enhancing rate performance (839.9 mAh g −1 at 2 C and 730.8 mAh g −1 at 3 C) and cycling stability. Furthermore, in situ Raman and X‐ray diffraction (XRD) analyses reveal that the NiS 2 ‐CoS 2 heterojunction rapidly catalyzes the conversion of LiPSs, reducing their migration toward the lithium anode and thereby suppressing the shuttle effect. The design strategy for transition metal sulfide heterojunctions offers an efficient approach to accelerating polysulfide conversion kinetics, effectively addressing the limitations of Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI