Micro-target localization algorithm based on improved local contour extraction and feature point matching

人工智能 计算机科学 阈值 计算机视觉 分割 像素 算法 模式识别(心理学) 特征(语言学) 特征提取 图像(数学) 语言学 哲学
作者
Dongjie Li,Xuening Guo,Fuyue Zhang,Weibin Rong,Yang Liu,Liang Yu,Yu Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9e0e
摘要

Abstract Images at the micrometer level usually have high resolution and contain a large amount of detailed information, and traditional vision algorithms are designed for macroscopic images, making it difficult to achieve accurate target localization at the microscopic scale. In this paper, we propose a micro-target localization algorithm based on improved local contour extraction and feature point matching to address the problems of low accuracy and time-consuming operation point localization under microscopic vision due to uneven illumination, angular shift of micro-targets, and occlusion. In the horizontal perspective, a light source correction algorithm based on the morphological algorithm and an edge enhancement algorithm based on Fourier transform is proposed to improve the accuracy of threshold segmentation and edge extraction, and a contour feature extraction algorithm based on Normalized Cross-Correlation (NCC) template matching and improved Otsu's Thresholding Method is utilized to achieve high-precision localization of multi-targets in micro-scale. In the vertical perspective, a Binary Robust Invariant Scalable Keypoints (BRISK) matching algorithm based on spatial feature screening is proposed to solve the problems of feature point mismatch and inaccurate localization of traditional algorithms in case of angular offset and occlusion of micro-targets. Finally, experiments were conducted on the microscopic vision operating system and experimentally compared with cutting-edge methods to verify the feasibility and superiority of the present method. The experimental results show that the proposed algorithm in this paper has an average error of 1.023 pixels and an average elapsed time of 109.08 ms, exhibits higher stability in the presence of light source interference, angular offset, and occlusion of micro-targets, and significantly improves both localization accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助乙二胺四乙酸采纳,获得10
1秒前
cassie完成签到,获得积分10
2秒前
4秒前
4秒前
风中的惊蛰完成签到,获得积分10
5秒前
6秒前
6秒前
elooo发布了新的文献求助10
9秒前
9秒前
10秒前
聪明煎蛋完成签到,获得积分10
10秒前
buran发布了新的文献求助10
11秒前
AQEFCTER发布了新的文献求助20
12秒前
赘婿应助糖伯虎采纳,获得10
13秒前
万能图书馆应助风中冷风采纳,获得30
14秒前
16秒前
瓦罐完成签到 ,获得积分10
17秒前
17秒前
19秒前
Hello应助渊思采纳,获得10
20秒前
王春完成签到,获得积分10
22秒前
22秒前
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得30
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得30
23秒前
毛豆爸爸应助科研通管家采纳,获得20
23秒前
天天快乐应助科研通管家采纳,获得30
23秒前
dd应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
25秒前
26秒前
芒果发布了新的文献求助10
26秒前
27秒前
鱼鱼完成签到,获得积分10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329635
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594779
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443715
科研通“疑难数据库(出版商)”最低求助积分说明 668827
邀请新用户注册赠送积分活动 656261