Micro-target localization algorithm based on improved local contour extraction and feature point matching

人工智能 计算机科学 阈值 计算机视觉 分割 像素 算法 模式识别(心理学) 特征(语言学) 特征提取 图像(数学) 语言学 哲学
作者
Dongjie Li,Xuening Guo,Fuyue Zhang,Weibin Rong,Yang Liu,Liang Yu,Yu Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9e0e
摘要

Abstract Images at the micrometer level usually have high resolution and contain a large amount of detailed information, and traditional vision algorithms are designed for macroscopic images, making it difficult to achieve accurate target localization at the microscopic scale. In this paper, we propose a micro-target localization algorithm based on improved local contour extraction and feature point matching to address the problems of low accuracy and time-consuming operation point localization under microscopic vision due to uneven illumination, angular shift of micro-targets, and occlusion. In the horizontal perspective, a light source correction algorithm based on the morphological algorithm and an edge enhancement algorithm based on Fourier transform is proposed to improve the accuracy of threshold segmentation and edge extraction, and a contour feature extraction algorithm based on Normalized Cross-Correlation (NCC) template matching and improved Otsu's Thresholding Method is utilized to achieve high-precision localization of multi-targets in micro-scale. In the vertical perspective, a Binary Robust Invariant Scalable Keypoints (BRISK) matching algorithm based on spatial feature screening is proposed to solve the problems of feature point mismatch and inaccurate localization of traditional algorithms in case of angular offset and occlusion of micro-targets. Finally, experiments were conducted on the microscopic vision operating system and experimentally compared with cutting-edge methods to verify the feasibility and superiority of the present method. The experimental results show that the proposed algorithm in this paper has an average error of 1.023 pixels and an average elapsed time of 109.08 ms, exhibits higher stability in the presence of light source interference, angular offset, and occlusion of micro-targets, and significantly improves both localization accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tonsil01发布了新的文献求助10
2秒前
宵夜完成签到,获得积分20
2秒前
韩野完成签到,获得积分10
2秒前
3秒前
李爱国应助niobium采纳,获得200
4秒前
4秒前
Ava应助歼击机88采纳,获得10
5秒前
无辜访彤发布了新的文献求助10
5秒前
6秒前
李呀完成签到,获得积分10
7秒前
fanqiaqia发布了新的文献求助10
7秒前
顺利的边牧完成签到 ,获得积分10
7秒前
繁荣的白亦完成签到 ,获得积分10
8秒前
做好梦了吗完成签到,获得积分20
8秒前
8秒前
没问题完成签到,获得积分10
8秒前
9秒前
LLL关注了科研通微信公众号
9秒前
韵苑完成签到,获得积分10
11秒前
孙红飞发布了新的文献求助10
11秒前
热情盼柳完成签到,获得积分10
11秒前
14秒前
14秒前
啦啦发布了新的文献求助10
14秒前
15秒前
香蕉觅云应助yanghaiyu采纳,获得10
16秒前
功不唐捐发布了新的文献求助10
17秒前
骰子完成签到,获得积分10
18秒前
星辰大海应助小路采纳,获得10
18秒前
18秒前
20秒前
20秒前
尔尔发布了新的文献求助10
21秒前
浮游应助是我呀吼采纳,获得10
21秒前
Owen应助现实的筮采纳,获得10
22秒前
LLL发布了新的文献求助10
23秒前
华仔应助搞怪的金鑫采纳,获得10
24秒前
满意的续发布了新的文献求助10
24秒前
醍醐不醒完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263