Facial Landmark Detection Based on High Precision Spatial Sampling via Millimeter-wave Radar

地标 极高频率 人工智能 计算机科学 遥感 采样(信号处理) 雷达 计算机视觉 地质学 电信 滤波器(信号处理)
作者
Yi Li,Chuyu Wang,Lei Xie,Jin Qiu,Long Fan,Jingyi Ning,Sanglu Lu
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:8 (4): 1-26
标识
DOI:10.1145/3699739
摘要

Facial landmark has become one of the most widely-used and intuitive feature of the face. Traditional methods for Facial Landmark Detection (FLD) are primarily based on cameras, which are limited by their sensitivity to light conditions, inability to penetrate obstructions, and potential privacy leaks. In this paper, we propose mmFLD to estimate the facial landmark positions using millimeter-wave (mmWave) radar with mm-level accuracy. By simultaneously applying the range estimation capability and angle estimation capability of mmWave radar, we are able to spatially sample face reflection signals with high resolution. In particular, we propose a velocity-based method for head detection and tracking, and then we build two generalized models to extract effective facial motion features from different facial regions. Moreover, we design an end-to-end neural network to extract the face structure and the motion coherence implicit in mmWave data. Experiment results show that mmFLD can estimate the facial landmark positions with high accuracy, e.g., the average Mean Absolute Error (MAE) is 2.81 mm with eight kinds of different facial expressions, and extended experiment also demonstrates the generalizability and robustness of mmFLD for different experiment conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
手机应助刘洋采纳,获得10
1秒前
科研通AI2S应助天马行空采纳,获得10
2秒前
gz发布了新的文献求助20
3秒前
打发打发的发到付电费完成签到,获得积分10
4秒前
8秒前
8秒前
11秒前
mily完成签到,获得积分10
11秒前
13秒前
16秒前
SciGPT应助yema采纳,获得10
16秒前
nana完成签到,获得积分10
18秒前
我是老大应助外向的凌雪采纳,获得10
20秒前
斯文败类应助gz采纳,获得10
20秒前
21秒前
钪锵玫瑰发布了新的文献求助10
24秒前
aquaflakes完成签到,获得积分10
24秒前
26秒前
dyk完成签到,获得积分10
28秒前
29秒前
一身反骨bu故意的乐巧完成签到,获得积分10
29秒前
FashionBoy应助czb采纳,获得10
30秒前
aquaflakes发布了新的文献求助10
30秒前
羡予完成签到 ,获得积分10
32秒前
多情紫霜发布了新的文献求助10
32秒前
34秒前
......应助科研通管家采纳,获得20
35秒前
华仔应助春春采纳,获得10
35秒前
汉堡包应助科研通管家采纳,获得10
35秒前
小二郎应助科研通管家采纳,获得10
36秒前
完美世界应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
一一应助科研通管家采纳,获得10
36秒前
Akim应助科研通管家采纳,获得10
36秒前
田様应助科研通管家采纳,获得10
36秒前
vivi应助科研通管家采纳,获得10
36秒前
38秒前
38秒前
微笑雁菡完成签到,获得积分20
42秒前
43秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267675
求助须知:如何正确求助?哪些是违规求助? 2907110
关于积分的说明 8340681
捐赠科研通 2577828
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 634008