EXPRESS: Investor Learning in Crowdfunded Supply Chain Finance Markets

供应链 业务 财务 营销
作者
Shengsheng Xiao,Yi‐Chun Ho,Zhijin Zhou,Yong Tan,Mingrui Zhang
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478251317137
摘要

Crowdfunded Supply Chain Finance (SCF) represents a novel market design that transforms financial flows within the SCF paradigm. It enables crowd investors to serve as financers, lending vital working capital to suppliers facing liquidity problems. A distinctive feature of this market is the mandatory involvement of loan guarantors, which facilitates repeated interactions between investors and fundraisers, potentially fostering investor learning. To understand how such learning dynamics shape investor decision-making, we develop a Bayesian learning model that conceptualizes investor perceptions of guarantor reliability as a subjective attitude underlying the perceived risk of a loan listing. The model posits that investors can learn about a guarantor’s reliability through a series of scheduled repayments involving the same guarantor over time. We consider investor decision-making a joint process comprising two interdependent components: (1) the incidence decision of whether to invest and (2) the amount decision of how much to invest. Our results reveal that investor perceptions of guarantor reliability play a crucial role in shaping both decisions, albeit in distinct ways. While perceived reliability exerts a positive, monotonic effect on amount decisions, its impact on incidence decisions follows an inverted U-shaped pattern. Furthermore, perceived reliability attenuates the positive effect of loan interest rates on both decisions, suggesting that the appeal of higher returns diminishes as investors’ reliability perceptions increase. A posterior analysis further shows that offering high interest rates may become counterproductive when perceived reliability is sufficiently high. These findings provide actionable implications for platform designers and participants in crowdfunded SCF markets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的蟠桃应助没放盐采纳,获得10
1秒前
1秒前
duola发布了新的文献求助10
2秒前
2秒前
因我而起发布了新的文献求助10
3秒前
miao123发布了新的文献求助10
4秒前
5秒前
Clean发布了新的文献求助10
6秒前
7秒前
xixi发布了新的文献求助10
7秒前
7秒前
罗同学发布了新的文献求助10
8秒前
JamesPei应助明亮的冰香采纳,获得10
9秒前
10秒前
丘比特应助Menloar采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
星辰大海应助十五采纳,获得10
12秒前
12秒前
大萝贝发布了新的文献求助10
13秒前
15秒前
酷波er应助畅快的饼干采纳,获得10
15秒前
852应助大白鲸采纳,获得10
16秒前
duola完成签到,获得积分20
17秒前
17秒前
17秒前
17秒前
pdx666完成签到,获得积分10
17秒前
富二蛋完成签到,获得积分20
18秒前
qingshan完成签到,获得积分10
19秒前
21秒前
英姑应助秋风晚来意采纳,获得10
23秒前
AM发布了新的文献求助10
23秒前
wadaxiwa应助温暖老鼠采纳,获得10
23秒前
23秒前
科研通AI5应助Liekkas采纳,获得10
24秒前
24秒前
奶油泡fu完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3584123
求助须知:如何正确求助?哪些是违规求助? 3153282
关于积分的说明 9496164
捐赠科研通 2855890
什么是DOI,文献DOI怎么找? 1569749
邀请新用户注册赠送积分活动 735617
科研通“疑难数据库(出版商)”最低求助积分说明 721300