Lamination-based organoid spatially resolved transcriptomics technique for primary lung and liver organoid characterization

类有机物 转录组 层压 生物 细胞生物学 医学 纳米技术 内科学 材料科学 生物化学 基因表达 图层(电子) 基因
作者
Shaohua Ma,Wanlong Wang,Jiaqi Zhou,Sheng-Fu Liao,Hai Cheng,Yibo Hou,Zhichun Zhou,Zitian Wang,Yuehui Su,Yu Zhu,Xiaoyong Dai,Yuan Zhao,Sha Liao,Yongde Cai,Xun Xu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (46)
标识
DOI:10.1073/pnas.2408939121
摘要

Spatial-transcriptomics technologies have demonstrated exceptional performance in characterizing brain and visceral organ tissues, as well as brain and retinal organoids. However, it has not yet been proven whether spatial transcriptomics can effectively characterize primary tissue-derived organoids, as the standardized tissue sectioning or slicing methods are not applicable for such organoids. Herein, we present a technique, lamination-based organoid spatially resolved transcriptomics (LOSRT), for organoid-spatially resolved transcriptomics based on organoid lamination. Primary mouse lung and liver-derived organoids were used in this study. The organoids were formulated using the droplet-engineering method and laminated using a homemade device with weight compression. This technique preserved most cells in individual organoids while maintaining delicate epithelium structures in laminated domains that can be recognized through visual segmentation. The mouse lung and liver organoids were resolved comprising various cell types, including alveolar cells, damage-associated transient progenitor cells, basal cells, macrophages, endothelial cells, fibroblasts, hepatocytes, and hepatic stellate cells. The distribution and count of cells were confirmed using immunohistology and identified with spatial transcriptomic features. This study reports an automated and integrated spatial transcriptomics method for primary organoids. It has the potential to standardize and rapidly characterize primary tissue-derived organoids.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
左囧发布了新的文献求助10
2秒前
丘比特应助追寻紫安采纳,获得10
3秒前
猫头嘤发布了新的文献求助10
3秒前
5秒前
阿南发布了新的文献求助10
6秒前
likai发布了新的文献求助10
7秒前
8秒前
林星应助zxf采纳,获得30
9秒前
发发发发布了新的文献求助10
10秒前
10秒前
12秒前
会撒娇的蓝天完成签到 ,获得积分10
12秒前
懒鸭鸭发布了新的文献求助10
14秒前
15秒前
酷酷的芙完成签到,获得积分10
15秒前
Hello应助lsy采纳,获得10
16秒前
price发布了新的文献求助10
18秒前
无奈的火龙果完成签到,获得积分10
18秒前
科研通AI2S应助dan1029采纳,获得10
19秒前
科研通AI2S应助dan1029采纳,获得10
19秒前
科研通AI2S应助dan1029采纳,获得10
19秒前
科研通AI2S应助dan1029采纳,获得10
19秒前
共享精神应助dan1029采纳,获得10
19秒前
大个应助dan1029采纳,获得10
19秒前
大个应助dan1029采纳,获得10
19秒前
完美世界应助dan1029采纳,获得10
19秒前
上官若男应助dan1029采纳,获得10
19秒前
科研通AI2S应助dan1029采纳,获得10
19秒前
天天快乐应助doctorbba采纳,获得10
20秒前
SciGPT应助激昂的背包采纳,获得10
21秒前
22秒前
22秒前
wzgkeyantong完成签到,获得积分10
22秒前
搜集达人应助谨慎凡桃采纳,获得10
23秒前
evefei发布了新的文献求助10
23秒前
周星星完成签到,获得积分10
25秒前
研友_VZG7GZ应助chsdpolos采纳,获得10
27秒前
认真科研发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111061
求助须知:如何正确求助?哪些是违规求助? 2761270
关于积分的说明 7664744
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282426
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478