Efficiently Constructing Convex Approximation Sets in Multiobjective Optimization Problems

数学优化 正多边形 凸优化 圆锥曲线优化 计算机科学 凸分析 多目标优化 真凸函数 数学 几何学
作者
Stephan Helfrich,Stefan Ruzika,Clemens Thielen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0220
摘要

Convex approximation sets for multiobjective optimization problems are a well-studied relaxation of the common notion of approximation sets. Instead of approximating each image of a feasible solution by the image of some solution in the approximation set up to a multiplicative factor in each component, a convex approximation set only requires this multiplicative approximation to be achieved by some convex combination of finitely many images of solutions in the set. This makes convex approximation sets efficiently computable for a wide range of multiobjective problems: even for many problems for which (classic) approximations sets are hard to compute. In this article, we propose a polynomial-time algorithm to compute convex approximation sets that builds on an exact or approximate algorithm for the weighted sum scalarization and is therefore applicable to a large variety of multiobjective optimization problems. The provided convex approximation quality is arbitrarily close to the approximation quality of the underlying algorithm for the weighted sum scalarization. In essence, our algorithm can be interpreted as an approximate version of the dual variant of Benson’s outer approximation algorithm. Thus, in contrast to existing convex approximation algorithms from the literature, information on solutions obtained during the approximation process is utilized to significantly reduce both the practical running time and the cardinality of the returned solution sets while still guaranteeing the same worst-case approximation quality. We underpin these advantages by the first comparison of all existing convex approximation algorithms on several instances of the triobjective knapsack problem and the triobjective symmetric metric traveling salesman problem. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research was supported by the German Research Foundation [Project 398572517]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0220 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0220 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
结实的老虎完成签到,获得积分10
2秒前
zwww完成签到,获得积分10
2秒前
CharlieYue发布了新的文献求助10
3秒前
周周发布了新的文献求助50
4秒前
Lychee完成签到 ,获得积分10
5秒前
SKD发布了新的文献求助10
6秒前
肉丸完成签到 ,获得积分10
8秒前
手可摘星陈同学完成签到 ,获得积分10
10秒前
wzhang完成签到,获得积分10
11秒前
阿莳完成签到 ,获得积分10
11秒前
哇嘞完成签到 ,获得积分10
11秒前
ST完成签到,获得积分10
11秒前
xiuxue424完成签到,获得积分10
12秒前
乌云乌云快走开完成签到,获得积分10
13秒前
豆浆油条完成签到 ,获得积分10
14秒前
扯淡儿完成签到 ,获得积分10
14秒前
林小鱼完成签到,获得积分10
16秒前
浮游应助CharlieYue采纳,获得10
18秒前
FMHChan完成签到,获得积分10
18秒前
c1302128340完成签到,获得积分10
18秒前
洁净百川完成签到 ,获得积分10
20秒前
DavidSun完成签到,获得积分10
20秒前
Gzdaigzn完成签到,获得积分10
21秒前
SKD发布了新的文献求助10
21秒前
21秒前
mechefy完成签到,获得积分10
23秒前
陈咪咪完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
cipherblaze完成签到,获得积分10
27秒前
carly完成签到 ,获得积分10
28秒前
老猫头鹰完成签到,获得积分10
30秒前
小兔子乖乖完成签到 ,获得积分10
30秒前
香蕉觅云应助Fzx采纳,获得10
31秒前
chemhub完成签到,获得积分10
31秒前
zhubin完成签到 ,获得积分10
32秒前
CipherSage应助我想想采纳,获得10
32秒前
amwlsai完成签到,获得积分10
33秒前
科目三应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432918
求助须知:如何正确求助?哪些是违规求助? 4545389
关于积分的说明 14195696
捐赠科研通 4464890
什么是DOI,文献DOI怎么找? 2447318
邀请新用户注册赠送积分活动 1438600
关于科研通互助平台的介绍 1415620