Efficiently Constructing Convex Approximation Sets in Multiobjective Optimization Problems

数学优化 正多边形 凸优化 圆锥曲线优化 计算机科学 凸分析 多目标优化 真凸函数 数学 几何学
作者
Stephan Helfrich,Stefan Ruzika,Clemens Thielen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0220
摘要

Convex approximation sets for multiobjective optimization problems are a well-studied relaxation of the common notion of approximation sets. Instead of approximating each image of a feasible solution by the image of some solution in the approximation set up to a multiplicative factor in each component, a convex approximation set only requires this multiplicative approximation to be achieved by some convex combination of finitely many images of solutions in the set. This makes convex approximation sets efficiently computable for a wide range of multiobjective problems: even for many problems for which (classic) approximations sets are hard to compute. In this article, we propose a polynomial-time algorithm to compute convex approximation sets that builds on an exact or approximate algorithm for the weighted sum scalarization and is therefore applicable to a large variety of multiobjective optimization problems. The provided convex approximation quality is arbitrarily close to the approximation quality of the underlying algorithm for the weighted sum scalarization. In essence, our algorithm can be interpreted as an approximate version of the dual variant of Benson’s outer approximation algorithm. Thus, in contrast to existing convex approximation algorithms from the literature, information on solutions obtained during the approximation process is utilized to significantly reduce both the practical running time and the cardinality of the returned solution sets while still guaranteeing the same worst-case approximation quality. We underpin these advantages by the first comparison of all existing convex approximation algorithms on several instances of the triobjective knapsack problem and the triobjective symmetric metric traveling salesman problem. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research was supported by the German Research Foundation [Project 398572517]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0220 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0220 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
火星人完成签到 ,获得积分10
2秒前
四叶草完成签到 ,获得积分10
3秒前
干净的沛蓝完成签到,获得积分10
3秒前
Yong-AI-BUPT发布了新的文献求助10
5秒前
琥1发布了新的文献求助10
5秒前
livra1058完成签到,获得积分10
5秒前
朴素的紫安完成签到 ,获得积分10
5秒前
火星上小土豆完成签到 ,获得积分10
6秒前
Silole完成签到,获得积分10
7秒前
Yong-AI-BUPT完成签到,获得积分10
14秒前
júpiter完成签到,获得积分10
15秒前
qiaoxi完成签到,获得积分10
15秒前
15秒前
cuddly完成签到 ,获得积分10
16秒前
mzrrong完成签到 ,获得积分10
17秒前
酢浆草小熊完成签到 ,获得积分10
18秒前
mcl发布了新的文献求助10
20秒前
chun完成签到 ,获得积分10
21秒前
顺利的曼寒完成签到 ,获得积分10
23秒前
firewood完成签到,获得积分10
27秒前
hh完成签到 ,获得积分10
27秒前
与一完成签到 ,获得积分10
27秒前
fomo完成签到,获得积分10
28秒前
OO圈圈完成签到,获得积分10
31秒前
yellow完成签到 ,获得积分10
31秒前
犹豫的若完成签到,获得积分10
32秒前
暮雪残梅完成签到 ,获得积分10
33秒前
海意完成签到,获得积分10
33秒前
大力的诗蕾完成签到 ,获得积分10
33秒前
松柏完成签到 ,获得积分10
34秒前
帆帆帆完成签到 ,获得积分10
35秒前
一只鲨呱完成签到,获得积分10
41秒前
Marshall完成签到 ,获得积分10
45秒前
尊敬秋双完成签到 ,获得积分10
49秒前
不爱吃鱼的猫完成签到,获得积分10
51秒前
月亮完成签到 ,获得积分10
51秒前
影像大侠完成签到,获得积分10
53秒前
踢球的孩子完成签到 ,获得积分10
55秒前
美丽的鞋垫完成签到 ,获得积分10
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167428
捐赠科研通 3248822
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664