Efficiently Constructing Convex Approximation Sets in Multiobjective Optimization Problems

数学优化 正多边形 凸优化 圆锥曲线优化 计算机科学 凸分析 多目标优化 真凸函数 数学 几何学
作者
Stephan Helfrich,Stefan Ruzika,Clemens Thielen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0220
摘要

Convex approximation sets for multiobjective optimization problems are a well-studied relaxation of the common notion of approximation sets. Instead of approximating each image of a feasible solution by the image of some solution in the approximation set up to a multiplicative factor in each component, a convex approximation set only requires this multiplicative approximation to be achieved by some convex combination of finitely many images of solutions in the set. This makes convex approximation sets efficiently computable for a wide range of multiobjective problems: even for many problems for which (classic) approximations sets are hard to compute. In this article, we propose a polynomial-time algorithm to compute convex approximation sets that builds on an exact or approximate algorithm for the weighted sum scalarization and is therefore applicable to a large variety of multiobjective optimization problems. The provided convex approximation quality is arbitrarily close to the approximation quality of the underlying algorithm for the weighted sum scalarization. In essence, our algorithm can be interpreted as an approximate version of the dual variant of Benson’s outer approximation algorithm. Thus, in contrast to existing convex approximation algorithms from the literature, information on solutions obtained during the approximation process is utilized to significantly reduce both the practical running time and the cardinality of the returned solution sets while still guaranteeing the same worst-case approximation quality. We underpin these advantages by the first comparison of all existing convex approximation algorithms on several instances of the triobjective knapsack problem and the triobjective symmetric metric traveling salesman problem. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research was supported by the German Research Foundation [Project 398572517]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0220 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0220 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WIK完成签到,获得积分10
刚刚
领导范儿应助hwy采纳,获得10
刚刚
1秒前
乖乖猫完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
bkagyin应助羽宇采纳,获得10
2秒前
yangxue完成签到,获得积分10
2秒前
2秒前
Cassidy完成签到,获得积分10
2秒前
3秒前
嘟嘟发布了新的文献求助10
3秒前
研友_VZG7GZ应助Yu采纳,获得10
4秒前
下雨发布了新的文献求助10
5秒前
嘉的科研完成签到 ,获得积分10
5秒前
6秒前
6秒前
dpc发布了新的文献求助10
6秒前
6秒前
renheit发布了新的文献求助10
7秒前
YYY发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
羽翼发布了新的文献求助20
8秒前
腼腆的冷玉完成签到,获得积分10
9秒前
半城微凉应助哈哈哈采纳,获得10
10秒前
wanci应助wenwenTang采纳,获得10
10秒前
充电宝应助youasheng采纳,获得10
10秒前
Akim应助cc采纳,获得10
10秒前
11秒前
少少完成签到,获得积分20
11秒前
yflag完成签到,获得积分10
11秒前
悟空完成签到,获得积分10
11秒前
zhuang完成签到,获得积分10
11秒前
11秒前
11秒前
华仔应助灰灰采纳,获得10
12秒前
Jiaqi完成签到,获得积分10
12秒前
cslghe发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130