Efficiently Constructing Convex Approximation Sets in Multiobjective Optimization Problems

数学优化 正多边形 凸优化 圆锥曲线优化 计算机科学 凸分析 多目标优化 真凸函数 数学 几何学
作者
Stephan Helfrich,Stefan Ruzika,Clemens Thielen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0220
摘要

Convex approximation sets for multiobjective optimization problems are a well-studied relaxation of the common notion of approximation sets. Instead of approximating each image of a feasible solution by the image of some solution in the approximation set up to a multiplicative factor in each component, a convex approximation set only requires this multiplicative approximation to be achieved by some convex combination of finitely many images of solutions in the set. This makes convex approximation sets efficiently computable for a wide range of multiobjective problems: even for many problems for which (classic) approximations sets are hard to compute. In this article, we propose a polynomial-time algorithm to compute convex approximation sets that builds on an exact or approximate algorithm for the weighted sum scalarization and is therefore applicable to a large variety of multiobjective optimization problems. The provided convex approximation quality is arbitrarily close to the approximation quality of the underlying algorithm for the weighted sum scalarization. In essence, our algorithm can be interpreted as an approximate version of the dual variant of Benson’s outer approximation algorithm. Thus, in contrast to existing convex approximation algorithms from the literature, information on solutions obtained during the approximation process is utilized to significantly reduce both the practical running time and the cardinality of the returned solution sets while still guaranteeing the same worst-case approximation quality. We underpin these advantages by the first comparison of all existing convex approximation algorithms on several instances of the triobjective knapsack problem and the triobjective symmetric metric traveling salesman problem. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research was supported by the German Research Foundation [Project 398572517]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0220 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0220 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英姑应助普鲁卡因采纳,获得10
5秒前
冰糕发布了新的文献求助10
7秒前
BettyNie完成签到 ,获得积分10
9秒前
优雅的平安完成签到 ,获得积分10
9秒前
冰糕完成签到,获得积分10
14秒前
16秒前
852应助完犊子采纳,获得10
20秒前
ruochenzu发布了新的文献求助10
21秒前
不想洗碗完成签到 ,获得积分10
23秒前
const完成签到,获得积分10
27秒前
hjx完成签到 ,获得积分10
27秒前
稳重的尔安完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
缓慢的饼干完成签到 ,获得积分10
30秒前
saturn完成签到 ,获得积分10
30秒前
金桔希子完成签到,获得积分10
31秒前
Breeze完成签到 ,获得积分10
31秒前
31秒前
昏睡的眼神完成签到 ,获得积分10
32秒前
文心同学完成签到,获得积分0
33秒前
demom完成签到 ,获得积分10
35秒前
duckspy完成签到 ,获得积分10
35秒前
完犊子发布了新的文献求助10
37秒前
普鲁卡因发布了新的文献求助30
38秒前
chenkj完成签到,获得积分10
40秒前
EricSai完成签到,获得积分10
40秒前
ikun完成签到,获得积分10
40秒前
李李发布了新的文献求助10
40秒前
章鱼小丸子完成签到 ,获得积分10
40秒前
byby完成签到,获得积分10
42秒前
THEO完成签到 ,获得积分10
43秒前
李健的小迷弟应助完犊子采纳,获得10
44秒前
45秒前
乐观的问兰完成签到 ,获得积分10
46秒前
书生完成签到,获得积分10
46秒前
朱佳宁完成签到 ,获得积分10
47秒前
Master完成签到 ,获得积分10
48秒前
怕孤独的香菇完成签到 ,获得积分10
48秒前
光亮冬寒完成签到,获得积分10
49秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022