Multi-level Noise Sampling from Single Image for Low-dose Tomography Reconstruction

迭代重建 计算机视觉 计算机科学 噪音(视频) 断层摄影术 人工智能 采样(信号处理) 计算机断层摄影术 医学影像学 图像(数学) 放射科 医学 滤波器(信号处理)
作者
Weiwen Wu,Yifei Long,Zhifan Gao,Guang Yang,Fangxiao Cheng,Jianjia Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3486726
摘要

Low-dose digital radiography (DR) and computed tomography (CT) become increasingly popular due to reduced radiation dose. However, they often result in degraded images with lower signal-to-noise ratios, creating an urgent need for effective denoising techniques. The recent advancement of the single-image-based denoising approach provides a promising solution without requirement of pairwise training data, which are scarce in medical imaging. These methods typically rely on sampling image pairs from a noisy image for inter-supervised denoising. Although enjoying simplicity, the generated image pairs are at the same noise level and only include partial information about the input images. This study argues that generating image pairs at different noise levels while fully using the information of the input image is preferable since it could provide richer multi-perspective clues to guide the denoising process. To this end, we present a novel Multi-Level Noise Sampling (MNS) method for low-dose tomography denoising. Specifically, MNS method generates multi-level noisy sub-images by partitioning the highdimensional input space into multiple low-dimensional subspaces with a simple yet effective strategy. The superiority of the MNS method in single-image-based denoising over the competing methods has been investigated and verified theoretically. Moreover, to bridge the gap between selfsupervised and supervised denoising networks, we introduce an optimization function that leverages prior knowledge of multi-level noisy sub-images to guide the training process. Through extensive quantitative and qualitative experiments conducted on large-scale clinical low-dose CT and DR datasets, we validate the effectiveness and superiority of our MNS approach over other state-of-the-art supervised and self-supervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxinxin发布了新的文献求助10
1秒前
2秒前
4秒前
5秒前
科研通AI5应助高兴123采纳,获得10
5秒前
CikY完成签到,获得积分10
6秒前
8秒前
9秒前
11秒前
情怀应助小心翼翼采纳,获得30
11秒前
11秒前
无限安蕾完成签到,获得积分10
12秒前
13秒前
13秒前
爱学习的不懂完成签到 ,获得积分10
14秒前
宝字盖发布了新的文献求助10
15秒前
健壮寄真发布了新的文献求助10
16秒前
16秒前
16秒前
科研通AI5应助he采纳,获得10
16秒前
jhiae完成签到,获得积分10
18秒前
Finger发布了新的文献求助10
18秒前
情怀应助Chiier采纳,获得10
19秒前
20秒前
嵤麈完成签到,获得积分10
20秒前
科研通AI5应助YYL采纳,获得10
20秒前
宫宛儿完成签到,获得积分10
20秒前
晓晓来了完成签到,获得积分10
21秒前
21秒前
大个应助浮沉采纳,获得10
21秒前
21秒前
RIchard完成签到,获得积分10
22秒前
Wangyn发布了新的文献求助10
22秒前
xu完成签到,获得积分10
22秒前
李爱国应助asd采纳,获得10
23秒前
充电宝应助wintersss采纳,获得10
24秒前
宝字盖完成签到,获得积分20
24秒前
syyy完成签到,获得积分10
25秒前
碧蓝中道发布了新的文献求助10
26秒前
小猪猪发布了新的文献求助10
26秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709812
求助须知:如何正确求助?哪些是违规求助? 3258499
关于积分的说明 9906429
捐赠科研通 2971547
什么是DOI,文献DOI怎么找? 1629533
邀请新用户注册赠送积分活动 772760
科研通“疑难数据库(出版商)”最低求助积分说明 743993