Mechanically Induced Nanoscale Architecture Endows a Titanium Carbide MXene Electrode with Integrated High Areal and Volumetric Capacitance

材料科学 电极 MXenes公司 电容 纳米技术 纳米尺度 碳化钛 碳化物 复合材料 光电子学 冶金 化学 物理化学
作者
Hongwu Chen,Huaipeng Wang,Chun Li
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (43) 被引量:27
标识
DOI:10.1002/adma.202205723
摘要

Complete utilization of electrochemically active materials while maintaining the high areal/volumetric packing density is a goal to be achieved in miniaturized supercapacitor devices, which therefore display both high volumetric and areal energy density. Although critical, it is usually challenging to achieve this goal by optimizing the electrode architecture. Dense packing of active materials maximizes the volumetric capacitance but also results in sluggish diffusion of the electrolyte. Structurization of the electrode by forming large pores creates a pathway for electrolyte penetration but reduces the volumetric energy density. Here, densified electrodes with hierarchical porous architecture at the nanoscale are reported, which provide an alternative solution. Worm-like expanded titanium carbide MXene powders are produced in highly viscous reaction media and assembled by mechanical compression. The expanded morphology of the MXene powders translates into a buckling microstructure in the electrodes, resulting in 28.2 ± 4.1% porosity mainly in the form of nanosized pores. At the sub-nanometer scale, the diffusion of electrolytes is enhanced in interlayer space of the bended lattice with pillared intercalants. These hierarchical structural features lead to both high areal and volumetric capacitance (11.4 F cm-2 coupled with 770 F cm-3 ) in hundred-micrometers-thick electrodes, which inspires the design of high-performance electrochemical energy storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材小料发布了新的文献求助10
1秒前
ChenXY完成签到,获得积分10
1秒前
halo发布了新的文献求助10
2秒前
lst完成签到,获得积分10
3秒前
科研通AI2S应助kangk采纳,获得10
4秒前
浮游应助空明流毓采纳,获得10
6秒前
7秒前
YUESIYA发布了新的文献求助30
8秒前
寒冷的奇异果完成签到,获得积分10
8秒前
spc68应助早安采纳,获得10
12秒前
复成完成签到 ,获得积分10
14秒前
光亮妙之完成签到,获得积分10
14秒前
dd发布了新的文献求助30
14秒前
整齐半青完成签到 ,获得积分10
14秒前
你好完成签到,获得积分10
15秒前
chenanqi完成签到,获得积分10
15秒前
16秒前
yfn完成签到,获得积分10
20秒前
21秒前
25秒前
halo完成签到,获得积分10
26秒前
抑郁小鼠解剖家完成签到,获得积分10
26秒前
忧心的不言完成签到,获得积分10
28秒前
5_羟色胺完成签到,获得积分10
30秒前
12135发布了新的文献求助30
30秒前
wanci应助科研通管家采纳,获得10
33秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得80
33秒前
华仔应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得30
33秒前
爱喝酸奶完成签到 ,获得积分10
33秒前
njgi发布了新的文献求助10
34秒前
材小料完成签到,获得积分10
35秒前
FashionBoy应助重要谷雪采纳,获得10
36秒前
爱偷懒的猪完成签到,获得积分10
37秒前
怂宝儿完成签到,获得积分10
38秒前
39秒前
41秒前
水澈天澜发布了新的文献求助20
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521