清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images

联营 计算机科学 背景(考古学) 分割 人工智能 眼底(子宫) 卷积神经网络 模式识别(心理学) 特征(语言学) 过程(计算) 计算机视觉 医学 眼科 语言学 生物 操作系统 哲学 古生物学
作者
Yanhong Liu,Ji Shen,Lei Yang,Gui‐Bin Bian,Hongnian Yu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104087-104087 被引量:116
标识
DOI:10.1016/j.bspc.2022.104087
摘要

For the clinical diagnosis, it is essential to obtain accurate morphology data of retinal blood vessels from patients, and the morphology of retinal blood vessels can well help doctors to judge the patient’s condition and give targeted therapeutic measures. Conventional manual retinal blood vessel segmentation by the doctors from the fundus images is time-consuming and laborious, while it also requires the rich doctor’s expertise. With the strong context feature expression ability of deep convolutional neural networks (DCNN), it has shown a promising performance on retinal blood vessel segmentation, specially U-shape network (U-Net) and its variant. However, due to the information loss issue caused by multiple pooling operations and insufficient process issue of local context features by skip connections, most of segmentation methods still exist a certain shortcoming on accurate fine vessel detection. To address this issue, based on the encoder–decoder framework, a novel retinal vessel segmentation network, called ResDO-UNet, is proposed to provide an automatic and end-to-end detection scheme from fundus images. To enhance feature extraction capabilities, combined with depth-wise over-parameterized convolutional layer (DO-conv), a residual DO-conv (ResDO-conv) network is proposed to act as the backbone network to acquire strong context features. In addition, to reduce the effect of information loss caused by multiple pooling operations, taking advantages of max pooling and average pooling layers, a pooling fusion block (PFB) is proposed to realize nonlinear fusion pooling. Meanwhile, faced with insufficient process of local context features by skip connections, an attention fusion block (AFB) is proposed to realize effective multi-scale feature expression. Combined with the three public available data sets on retinal vessel segmentation, including DRIVE, STARE and CHASE_DB1, the proposed segmentation network could reach a state-of-the-art detection performance compared to other related advanced work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯提亚拉发布了新的文献求助10
5秒前
7秒前
17秒前
科研通AI6应助liwen采纳,获得10
52秒前
56秒前
龚文亮完成签到,获得积分10
1分钟前
慕青应助狂野宛凝采纳,获得10
1分钟前
常有李完成签到,获得积分10
1分钟前
1分钟前
殷勤的紫槐应助科研通管家采纳,获得200
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
tt完成签到,获得积分10
2分钟前
2分钟前
2分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
3分钟前
我是老大应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
狂野宛凝发布了新的文献求助10
3分钟前
3分钟前
4分钟前
领导范儿应助Gryphon采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
Gryphon发布了新的文献求助10
4分钟前
打打应助Gryphon采纳,获得10
4分钟前
5分钟前
liwen发布了新的文献求助10
5分钟前
Gryphon发布了新的文献求助10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
Gryphon完成签到,获得积分20
5分钟前
5分钟前
5分钟前
小柏学长完成签到,获得积分10
5分钟前
zoomer发布了新的文献求助10
5分钟前
VVS完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503