ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images

联营 计算机科学 背景(考古学) 分割 人工智能 眼底(子宫) 卷积神经网络 模式识别(心理学) 特征(语言学) 过程(计算) 计算机视觉 医学 眼科 语言学 生物 操作系统 哲学 古生物学
作者
Yanhong Liu,Ji Shen,Lei Yang,Gui‐Bin Bian,Hongnian Yu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104087-104087 被引量:116
标识
DOI:10.1016/j.bspc.2022.104087
摘要

For the clinical diagnosis, it is essential to obtain accurate morphology data of retinal blood vessels from patients, and the morphology of retinal blood vessels can well help doctors to judge the patient’s condition and give targeted therapeutic measures. Conventional manual retinal blood vessel segmentation by the doctors from the fundus images is time-consuming and laborious, while it also requires the rich doctor’s expertise. With the strong context feature expression ability of deep convolutional neural networks (DCNN), it has shown a promising performance on retinal blood vessel segmentation, specially U-shape network (U-Net) and its variant. However, due to the information loss issue caused by multiple pooling operations and insufficient process issue of local context features by skip connections, most of segmentation methods still exist a certain shortcoming on accurate fine vessel detection. To address this issue, based on the encoder–decoder framework, a novel retinal vessel segmentation network, called ResDO-UNet, is proposed to provide an automatic and end-to-end detection scheme from fundus images. To enhance feature extraction capabilities, combined with depth-wise over-parameterized convolutional layer (DO-conv), a residual DO-conv (ResDO-conv) network is proposed to act as the backbone network to acquire strong context features. In addition, to reduce the effect of information loss caused by multiple pooling operations, taking advantages of max pooling and average pooling layers, a pooling fusion block (PFB) is proposed to realize nonlinear fusion pooling. Meanwhile, faced with insufficient process of local context features by skip connections, an attention fusion block (AFB) is proposed to realize effective multi-scale feature expression. Combined with the three public available data sets on retinal vessel segmentation, including DRIVE, STARE and CHASE_DB1, the proposed segmentation network could reach a state-of-the-art detection performance compared to other related advanced work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻小凡完成签到,获得积分10
刚刚
1秒前
陈柚瑾发布了新的文献求助10
2秒前
SciGPT应助憨憨芸采纳,获得10
3秒前
CCC完成签到,获得积分10
3秒前
闪闪盼兰发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
没事哒发布了新的文献求助10
5秒前
科研通AI5应助xiaozhou采纳,获得10
5秒前
科研通AI5应助xiaoliu采纳,获得10
6秒前
想要毕业完成签到,获得积分10
8秒前
刚睡着就天亮完成签到 ,获得积分10
8秒前
9秒前
唐泽雪穗应助CCC采纳,获得10
9秒前
今后应助aka鱼鱼鱼采纳,获得10
10秒前
兴奋念真完成签到,获得积分20
11秒前
sabery发布了新的文献求助10
11秒前
天马行空完成签到,获得积分10
12秒前
同城代打发布了新的文献求助10
12秒前
lily完成签到,获得积分10
12秒前
SONGYEZI完成签到,获得积分0
16秒前
张玉雪发布了新的文献求助10
16秒前
Jenkin完成签到,获得积分10
17秒前
同城代打完成签到,获得积分10
17秒前
时间尘埃完成签到,获得积分10
18秒前
柒z完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
量子星尘发布了新的文献求助20
22秒前
22秒前
22秒前
lindadsl完成签到,获得积分10
24秒前
叶子国王发布了新的文献求助10
25秒前
25秒前
无花果应助痴情的飞绿采纳,获得10
26秒前
憨憨芸发布了新的文献求助10
26秒前
Hua发布了新的文献求助10
26秒前
闪闪盼兰完成签到,获得积分20
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5056591
求助须知:如何正确求助?哪些是违规求助? 4282081
关于积分的说明 13344888
捐赠科研通 4099030
什么是DOI,文献DOI怎么找? 2243907
邀请新用户注册赠送积分活动 1250063
关于科研通互助平台的介绍 1180451