已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning model with incorporation of microvascular invasion area as a factor in predicting prognosis of hepatocellular carcinoma after R0 hepatectomy

医学 肝细胞癌 肝病学 肝切除术 内科学 肝硬化 比例危险模型 外科肿瘤学 队列 风险因素 接收机工作特性 回顾性队列研究 胃肠病学 结直肠外科 肿瘤科 外科 切除术 腹部外科
作者
Kang Wang,Yan‐Jun Xiang,Jiangpeng Yan,Yuyao Zhu,Hanbo Chen,Hongming Yu,Yuqiang Cheng,Xiu Li,Wei Dong,Ji Yan,Jing‐Jing Li,Dong Xie,Wan Yee Lau,Jianhua Yao,Shuqun Cheng
出处
期刊:Hepatology International [Springer Science+Business Media]
卷期号:16 (5): 1188-1198 被引量:10
标识
DOI:10.1007/s12072-022-10393-w
摘要

IntroductionMicrovascular invasion (MVI) is a known risk factor for prognosis after R0 liver resection for hepatocellular carcinoma (HCC). The aim of this study was to develop a deep learning prognostic prediction model by incorporating a new factor of MVI area to the other independent risk factors.MethodsConsecutive patients with HCC who underwent R0 liver resection from January to December 2016 at the Eastern Hepatobiliary Surgery Hospital were included in this retrospective study. For patients with MVI detected on resected specimens, they were divided into two groups according to the size of the maximal MVI area: the small-MVI group and the large-MVI group.ResultsOf 193 patients who had MVI in the 337 HCC patients, 130 patients formed the training cohort and 63 patients formed the validation cohort. The large-MVI group of patients had worse overall survival (OS) when compared with the small-MVI group (p = 0.009). A deep learning model was developed based on the following independent risk factors found in this study: MVI stage, maximal MVI area, presence/absence of cirrhosis, and maximal tumor diameter. The areas under the receiver operating characteristic of the deep learning model for the 1-, 3-, and 5-year predictions of OS were 80.65, 74.04, and 79.44, respectively, which outperformed the traditional COX proportional hazards model.ConclusionThe deep learning model, by incorporating the maximal MVI area as an additional prognostic factor to the other previously known independent risk factors, predicted more accurately postoperative long-term OS for HCC patients with MVI after R0 liver resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋霜完成签到 ,获得积分10
2秒前
仙女爷爷完成签到,获得积分10
6秒前
科研通AI2S应助清秀元芹采纳,获得10
8秒前
8秒前
丁元英完成签到,获得积分10
9秒前
kokoko完成签到,获得积分10
11秒前
12秒前
12秒前
16秒前
背后时光发布了新的文献求助10
16秒前
19秒前
21秒前
HHR33应助Brightan采纳,获得10
24秒前
深情安青应助背后时光采纳,获得10
25秒前
Odingers发布了新的文献求助10
25秒前
yoyo完成签到,获得积分10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
huiya应助科研通管家采纳,获得10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
Grayball应助科研通管家采纳,获得10
30秒前
31秒前
Grayball应助科研通管家采纳,获得10
31秒前
开心岩应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
Grayball应助科研通管家采纳,获得10
31秒前
824完成签到,获得积分10
31秒前
开心岩应助科研通管家采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
31秒前
31秒前
33秒前
36秒前
Lucas应助CC采纳,获得10
41秒前
42秒前
yeyeye发布了新的文献求助10
42秒前
46秒前
luole发布了新的文献求助30
47秒前
49秒前
50秒前
蓓蕾完成签到 ,获得积分10
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962