Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer

反向电渗析 渗透力 化学 可再生能源 纳米技术 机械 几何学 化学工程 机械工程 电气工程 材料科学 热力学 功率(物理) 发电 物理 工程类 数学 生物化学 反渗透 正渗透
作者
Hossein Dartoomi,Mahdi Khatibi,Seyed Nezameddin Ashrafizadeh
出处
期刊:Langmuir [American Chemical Society]
卷期号:38 (33): 10313-10330 被引量:51
标识
DOI:10.1021/acs.langmuir.2c01790
摘要

Researchers are looking for new, clean, and accessible sources of energy due to rising global warming caused by the usage of fossil fuels and the irreversible harm that this does to the environment. Water salinity is one of the newest and most accessible renewable energy sources, which has sparked a lot of interest. Reverse electrodialysis (RED) has been utilized in the past to turn saline water into electricity. NRED, a reverse electrodialysis method utilizing nanofluidics, has gained popularity as nanoscale research advances. Developing and evaluating NRED systems is time-consuming and expensive due to the method's novelty; thus, modeling is required to identify the best locations for implementation and to comprehend its workings. In this work, we examined the influence of bipolar soft layer and nanochannel geometry on ion transfer and power production simultaneously. To achieve this, the two trumpet and cigarette geometries were coated with a bipolar soft layer so that both negative (type (I)) and positive (type (II)) charges could be positioned in the nanochannel's small aperture. After that, at steady state conditions, the Poisson–Nernst–Planck (PNP) and Navier–Stokes (NS) equations were solved concurrently. The findings revealed that altering the nanochannel coating from type (I) to type (II) alters the channel's selectivity from cations to anions. An approximately 22-fold improvement in energy conversion efficiency was achieved by raising the concentration ratio from 10 to 100 for the type (I) trumpet nanochannel. Type (I) cigarette geometry is advised for maximum power output at low and medium concentration ratios, whereas type (I) trumpet geometry is recommended for the maximum power production at high concentration ratios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大草莓发布了新的文献求助10
1秒前
angelwsj发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
大吴克发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
YuenYuen发布了新的文献求助10
3秒前
在水一方应助知足常乐采纳,获得10
4秒前
淡然紫霜完成签到,获得积分20
4秒前
冷静靖荷应助yingzi采纳,获得10
4秒前
潇潇微雨发布了新的文献求助10
5秒前
大个应助暴富采纳,获得10
5秒前
5秒前
5秒前
丘比特应助Lein采纳,获得10
5秒前
豆豆发布了新的文献求助10
6秒前
科研通AI5应助在意i采纳,获得50
6秒前
6秒前
wu61发布了新的文献求助10
7秒前
Yen完成签到,获得积分10
7秒前
uii完成签到,获得积分10
8秒前
8秒前
小妍同学发布了新的文献求助10
8秒前
濮阳盼曼发布了新的文献求助10
8秒前
8秒前
9秒前
Hello应助nino采纳,获得10
9秒前
金桔儿完成签到,获得积分10
10秒前
香芋应助大意的安白采纳,获得10
10秒前
张小星完成签到,获得积分10
10秒前
干净初彤发布了新的文献求助10
10秒前
nisky发布了新的文献求助10
10秒前
10秒前
贺飞风完成签到,获得积分10
11秒前
李健的小迷弟应助1234采纳,获得10
11秒前
怕黑的醉山完成签到,获得积分20
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487464
求助须知:如何正确求助?哪些是违规求助? 3075498
关于积分的说明 9140837
捐赠科研通 2767731
什么是DOI,文献DOI怎么找? 1518729
邀请新用户注册赠送积分活动 703299
科研通“疑难数据库(出版商)”最低求助积分说明 701751