亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images

微卫星不稳定性 计算机科学 人工智能 卷积神经网络 深度学习 相似性(几何) 班级(哲学) 模式识别(心理学) 试验装置 集合(抽象数据类型) F1得分 机器学习 结直肠癌 微调 癌症 图像(数学) 微卫星 医学 内科学 生物 基因 程序设计语言 物理 量子力学 生物化学 等位基因
作者
Jingjiao Lou,Jiawen Xu,Yuyan Zhang,Yuhong Sun,Aiju Fang,Ji‐Xuan Liu,Luis A. J. Mur,Bing Ji
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107095-107095 被引量:18
标识
DOI:10.1016/j.cmpb.2022.107095
摘要

Recent studies have shown that colorectal cancer (CRC) patients with microsatellite instability high (MSI-H) are more likely to benefit from immunotherapy. However, current MSI testing methods are not available for all patients due to the lack of available equipment and trained personnel, as well as the high cost of the assay. Here, we developed an improved deep learning model to predict MSI-H in CRC from whole slide images (WSIs).We established the MSI-H prediction model based on two stages: tumor detection and MSI classification. Previous works applied fine-tuning strategy directly for tumor detection, but ignoring the challenge of vanishing gradient due to the large number of convolutional layers. We added auxiliary classifiers to intermediate layers of pre-trained models to help propagate gradients back through in an effective manner. To predict MSI status, we constructed a pair-wise learning model with a synergic network, named parameter partial sharing network (PPsNet), where partial parameters are shared among two deep convolutional neural networks (DCNNs). The proposed PPsNet contained fewer parameters and reduced the problem of intra-class variation and inter-class similarity. We validated the proposed model on a holdout test set and two external test sets.144 H&E-stained WSIs from 144 CRC patients (81 cases with MSI-H and 63 cases with MSI-L/MSS) were collected retrospectively from three hospitals. The experimental results indicate that deep supervision based fine-tuning almost outperforms training from scratch and utilizing fine-tuning directly. The proposed PPsNet always achieves better accuracy and area under the receiver operating characteristic curve (AUC) than other solutions with four different neural network architectures on validation. The proposed method finally achieves obvious improvements than other state-of-the-art methods on the validation dataset with an accuracy of 87.28% and AUC of 94.29%.The proposed method can obviously increase model performance and our model yields better performance than other methods. Additionally, this work also demonstrates the feasibility of MSI-H prediction using digital pathology images based on deep learning in the Asian population. It is hoped that this model could serve as an auxiliary tool to identify CRC patients with MSI-H more time-saving and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
51秒前
ww发布了新的文献求助10
52秒前
ww发布了新的文献求助100
58秒前
xingsixs完成签到 ,获得积分10
1分钟前
1分钟前
九零后无心完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lin.xy完成签到,获得积分10
2分钟前
ww发布了新的文献求助10
2分钟前
ww发布了新的文献求助10
2分钟前
al完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
ww发布了新的文献求助10
2分钟前
ww发布了新的文献求助10
3分钟前
3分钟前
3分钟前
依霏发布了新的文献求助10
3分钟前
3分钟前
shenglue发布了新的文献求助10
3分钟前
丘比特应助依霏采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
rrrrrrry发布了新的文献求助20
4分钟前
ww发布了新的文献求助20
4分钟前
岁和景明完成签到 ,获得积分10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
fenfen发布了新的文献求助10
5分钟前
xuan发布了新的文献求助10
5分钟前
ww发布了新的文献求助10
5分钟前
xuan完成签到,获得积分10
5分钟前
大模型应助fenfen采纳,获得10
5分钟前
我是站长才怪应助西子阳采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
我是站长才怪给twotwomi的求助进行了留言
6分钟前
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015073
求助须知:如何正确求助?哪些是违规求助? 3555011
关于积分的说明 11317842
捐赠科研通 3288529
什么是DOI,文献DOI怎么找? 1812249
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983