清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images

微卫星不稳定性 计算机科学 人工智能 卷积神经网络 深度学习 相似性(几何) 班级(哲学) 模式识别(心理学) 试验装置 集合(抽象数据类型) F1得分 机器学习 结直肠癌 微调 癌症 图像(数学) 微卫星 医学 内科学 生物 基因 程序设计语言 物理 量子力学 生物化学 等位基因
作者
Junjie Lou,Jiawen Xu,Yuyan Zhang,Yuhong Sun,Aiju Fang,Ji‐Xuan Liu,Luis A. J. Mur,Bing Ji
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107095-107095 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107095
摘要

Recent studies have shown that colorectal cancer (CRC) patients with microsatellite instability high (MSI-H) are more likely to benefit from immunotherapy. However, current MSI testing methods are not available for all patients due to the lack of available equipment and trained personnel, as well as the high cost of the assay. Here, we developed an improved deep learning model to predict MSI-H in CRC from whole slide images (WSIs).We established the MSI-H prediction model based on two stages: tumor detection and MSI classification. Previous works applied fine-tuning strategy directly for tumor detection, but ignoring the challenge of vanishing gradient due to the large number of convolutional layers. We added auxiliary classifiers to intermediate layers of pre-trained models to help propagate gradients back through in an effective manner. To predict MSI status, we constructed a pair-wise learning model with a synergic network, named parameter partial sharing network (PPsNet), where partial parameters are shared among two deep convolutional neural networks (DCNNs). The proposed PPsNet contained fewer parameters and reduced the problem of intra-class variation and inter-class similarity. We validated the proposed model on a holdout test set and two external test sets.144 H&E-stained WSIs from 144 CRC patients (81 cases with MSI-H and 63 cases with MSI-L/MSS) were collected retrospectively from three hospitals. The experimental results indicate that deep supervision based fine-tuning almost outperforms training from scratch and utilizing fine-tuning directly. The proposed PPsNet always achieves better accuracy and area under the receiver operating characteristic curve (AUC) than other solutions with four different neural network architectures on validation. The proposed method finally achieves obvious improvements than other state-of-the-art methods on the validation dataset with an accuracy of 87.28% and AUC of 94.29%.The proposed method can obviously increase model performance and our model yields better performance than other methods. Additionally, this work also demonstrates the feasibility of MSI-H prediction using digital pathology images based on deep learning in the Asian population. It is hoped that this model could serve as an auxiliary tool to identify CRC patients with MSI-H more time-saving and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
寂寞圣贤完成签到,获得积分10
7秒前
BY完成签到,获得积分10
11秒前
其安发布了新的文献求助30
23秒前
帅气天荷完成签到 ,获得积分10
34秒前
Sunny完成签到 ,获得积分10
41秒前
杨乃彬完成签到,获得积分10
49秒前
1分钟前
卓梨完成签到 ,获得积分10
1分钟前
1分钟前
呵呵贺哈完成签到 ,获得积分10
1分钟前
1分钟前
Raul完成签到 ,获得积分10
1分钟前
m赤子心完成签到 ,获得积分10
1分钟前
焚心结完成签到 ,获得积分10
1分钟前
1分钟前
南风完成签到 ,获得积分10
1分钟前
调研昵称发布了新的文献求助10
1分钟前
明朗完成签到 ,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得30
2分钟前
戚雅柔完成签到 ,获得积分10
2分钟前
yan完成签到 ,获得积分10
2分钟前
Will完成签到 ,获得积分10
2分钟前
燕山堂完成签到 ,获得积分10
2分钟前
古炮完成签到 ,获得积分10
2分钟前
平常从蓉完成签到,获得积分10
2分钟前
tingyeh完成签到,获得积分10
2分钟前
握瑾怀瑜完成签到 ,获得积分0
2分钟前
luckygirl完成签到 ,获得积分10
2分钟前
十七完成签到 ,获得积分10
2分钟前
所得皆所愿完成签到 ,获得积分10
2分钟前
张大星完成签到 ,获得积分10
3分钟前
wang5945完成签到 ,获得积分10
3分钟前
土拨鼠完成签到 ,获得积分10
3分钟前
倾卿如玉完成签到 ,获得积分10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
前夜发布了新的文献求助10
4分钟前
小鱼女侠完成签到 ,获得积分10
5分钟前
齐齐完成签到,获得积分10
5分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921910
捐赠科研通 2478466
什么是DOI,文献DOI怎么找? 1320348
科研通“疑难数据库(出版商)”最低求助积分说明 632767
版权声明 602442