PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images

微卫星不稳定性 计算机科学 人工智能 卷积神经网络 深度学习 相似性(几何) 班级(哲学) 模式识别(心理学) 试验装置 集合(抽象数据类型) F1得分 机器学习 结直肠癌 微调 癌症 图像(数学) 微卫星 医学 内科学 生物 物理 基因 等位基因 程序设计语言 量子力学 生物化学
作者
Jingjiao Lou,Jiawen Xu,Yuyan Zhang,Yuhong Sun,Aiju Fang,Ji‐Xuan Liu,Luis A. J. Mur,Bing Ji
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107095-107095 被引量:18
标识
DOI:10.1016/j.cmpb.2022.107095
摘要

Recent studies have shown that colorectal cancer (CRC) patients with microsatellite instability high (MSI-H) are more likely to benefit from immunotherapy. However, current MSI testing methods are not available for all patients due to the lack of available equipment and trained personnel, as well as the high cost of the assay. Here, we developed an improved deep learning model to predict MSI-H in CRC from whole slide images (WSIs).We established the MSI-H prediction model based on two stages: tumor detection and MSI classification. Previous works applied fine-tuning strategy directly for tumor detection, but ignoring the challenge of vanishing gradient due to the large number of convolutional layers. We added auxiliary classifiers to intermediate layers of pre-trained models to help propagate gradients back through in an effective manner. To predict MSI status, we constructed a pair-wise learning model with a synergic network, named parameter partial sharing network (PPsNet), where partial parameters are shared among two deep convolutional neural networks (DCNNs). The proposed PPsNet contained fewer parameters and reduced the problem of intra-class variation and inter-class similarity. We validated the proposed model on a holdout test set and two external test sets.144 H&E-stained WSIs from 144 CRC patients (81 cases with MSI-H and 63 cases with MSI-L/MSS) were collected retrospectively from three hospitals. The experimental results indicate that deep supervision based fine-tuning almost outperforms training from scratch and utilizing fine-tuning directly. The proposed PPsNet always achieves better accuracy and area under the receiver operating characteristic curve (AUC) than other solutions with four different neural network architectures on validation. The proposed method finally achieves obvious improvements than other state-of-the-art methods on the validation dataset with an accuracy of 87.28% and AUC of 94.29%.The proposed method can obviously increase model performance and our model yields better performance than other methods. Additionally, this work also demonstrates the feasibility of MSI-H prediction using digital pathology images based on deep learning in the Asian population. It is hoped that this model could serve as an auxiliary tool to identify CRC patients with MSI-H more time-saving and efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
starrism发布了新的文献求助10
1秒前
戳戳发布了新的文献求助30
2秒前
哭泣青烟完成签到 ,获得积分10
2秒前
3秒前
4秒前
小玲子发布了新的文献求助10
4秒前
科研通AI6应助司予采纳,获得10
4秒前
5秒前
哈哈镜阿姐应助xiongwenlei采纳,获得10
5秒前
5秒前
爆米花应助安蓝采纳,获得10
6秒前
xzzz完成签到,获得积分10
6秒前
Akim应助milaiii采纳,获得10
6秒前
结实的胡萝卜完成签到,获得积分10
6秒前
8秒前
ZZX完成签到,获得积分10
9秒前
小张同学发布了新的文献求助10
9秒前
Jasper应助ZJH采纳,获得10
10秒前
10秒前
哈哈哈完成签到,获得积分10
11秒前
昇H完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
思源应助小玲子采纳,获得10
13秒前
HJJHJH发布了新的文献求助10
13秒前
琳琳发布了新的文献求助30
14秒前
jubai完成签到,获得积分10
16秒前
森屿完成签到,获得积分10
16秒前
元气马完成签到 ,获得积分10
16秒前
Larluli完成签到,获得积分20
17秒前
安蓝发布了新的文献求助10
17秒前
小张同学完成签到,获得积分10
17秒前
美味又健康完成签到 ,获得积分10
19秒前
1.1发布了新的文献求助10
19秒前
SY发布了新的文献求助10
19秒前
CipherSage应助犹豫的问柳采纳,获得10
20秒前
21秒前
六一完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642428
求助须知:如何正确求助?哪些是违规求助? 4758826
关于积分的说明 15017538
捐赠科研通 4801013
什么是DOI,文献DOI怎么找? 2566317
邀请新用户注册赠送积分活动 1524459
关于科研通互助平台的介绍 1483969