Minimizing recovery cost of network optimization problems

数学优化 稳健性(进化) 最小成本流问题 还原(数学) 约束(计算机辅助设计) 计算机科学 整数(计算机科学) 最优化问题 解决方案集 集合(抽象数据类型) 数学 流量网络 基因 生物化学 化学 程序设计语言 几何学
作者
Zacharie Alès,Sourour Elloumi
出处
期刊:Networks [Wiley]
卷期号:81 (1): 125-151
标识
DOI:10.1002/net.22121
摘要

Abstract We propose a two‐stage recoverable robustness approach that minimizes the recovery cost. In many applications, once the uncertainty is revealed, it can be more important to recover a solution which is as similar as possible to the nominal solution than to minimize the nominal objective value of . This for example occurs when the nominal solution is implemented on a regular basis or when the uncertainty is revealed late. We define the proactive problem which minimizes the weighted recovery costs over a discrete set of scenarios while ensuring optimality of the nominal objective value of . We model the recovery cost of a scenario by a distance between the first‐stage nominal solution and the second‐stage solution recovered for this scenario. We show for two different solution distances and that the proactive problem is ‐hard for both the integer min‐cost flow problem with uncertain arc demands and for the integer max‐flow problem with uncertain arc capacities. For these two problems, we prove that once uncertainty is revealed, even identifying a reactive solution with a minimal distance to a given solution is ‐hard for , and is polynomial for . We highlight the benefits of the proactive approach in a case study on a railroad planning problem. First, we compare it to the anchored and the ‐distance approaches. Then, we show the efficiency of the proactive solution over reactive solutions. Finally, we illustrate the recovery cost reduction when relaxing the optimality constraint on the nominal objective of the proactive solution . We also consider the min–max version of the proactive problem where we minimize the maximal recovery cost over all scenarios. We show that the same complexity results hold for this version. We also exhibit a class of problems for which the set of extreme points of the convex hull of a discrete uncertainty set always contain a worst‐case scenario. We show that this result does not hold for three distinct classes deduced from the first one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Q.curiosity完成签到,获得积分10
刚刚
丘比特应助我行我素采纳,获得10
刚刚
ClaudiaCY完成签到,获得积分10
刚刚
刚刚
科研天才完成签到,获得积分10
1秒前
GHOST发布了新的文献求助10
1秒前
1秒前
2秒前
谢家宝树发布了新的文献求助10
2秒前
HEIKU应助Ying采纳,获得10
3秒前
Zzz完成签到,获得积分10
3秒前
LC发布了新的文献求助20
3秒前
刘怀蕊完成签到,获得积分10
4秒前
4秒前
LLL发布了新的文献求助10
4秒前
跳跃乘风完成签到,获得积分10
5秒前
Anxinxin完成签到,获得积分10
5秒前
阳佟冬卉完成签到,获得积分10
6秒前
Silence发布了新的文献求助10
6秒前
6秒前
通通通发布了新的文献求助10
7秒前
帅气的秘密完成签到 ,获得积分10
7秒前
领导范儿应助马建国采纳,获得10
7秒前
lysixsixsix完成签到,获得积分10
7秒前
8秒前
jia完成签到,获得积分10
8秒前
欣喜乐天发布了新的文献求助10
8秒前
Kiyotaka完成签到,获得积分10
8秒前
9秒前
季夏发布了新的文献求助10
9秒前
Tingshan发布了新的文献求助20
10秒前
背后的诺言完成签到 ,获得积分20
10秒前
GHOST完成签到,获得积分20
11秒前
11秒前
勤奋的蜗牛完成签到,获得积分20
11秒前
omo发布了新的文献求助10
11秒前
Akim应助糊糊采纳,获得10
12秒前
Zn应助dsjlove采纳,获得10
12秒前
月球宇航员完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762