Domain Adaptation for Remote Sensing Image Semantic Segmentation: An Integrated Approach of Contrastive Learning and Adversarial Learning

计算机科学 人工智能 鉴别器 特征学习 模式识别(心理学) 分割 代表(政治) 相似性(几何) 特征(语言学) 匹配(统计) 特征提取 图像(数学) 数学 电信 语言学 哲学 统计 探测器 政治 政治学 法学
作者
Lubin Bai,Shihong Du,Xiuyuan Zhang,Haoyu Wang,Bo Liu,Song Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:34
标识
DOI:10.1109/tgrs.2022.3198972
摘要

Although semantic segmentation models based on deep neural networks (DNNs) have achieved excellent results, generalizing well from one remote sensing dataset (source domain) to another dataset with different acquisition conditions (target domain) remains a major challenge. Many domain adaptation (DA) approaches have been proposed to address this problem. DA aims to help DNNs learn a generalizable representation space in which source and target domains have similar feature distributions, but most of the existing DA approaches have difficulty in aligning the high-dimensional image representations of two domains directly. In this study, we proposed a model integrating contrastive learning and adversarial learning in a unified framework for aligning two domains in both representation space and spatial layout. Specifically, the model consists of a semantic segmentation network for feature extraction and two branches for DA. The first branch is used for adaptation in representation space directly by a proposed pixelwise contrastive loss, while the second branch is used for adaptation in predicted results to help two domains have similar spatial layouts through a novel but simple entropy-based similarity discriminator. Additionally, a training strategy called category similarity matching sampling was proposed to provide source and target image pairs with similar category composition for each training iteration, which can help the two branches work better. Extensive experiments indicated that the two branches can benefit each other to gain a superior performance and DA pretraining by our methods can achieve impressive results with only a small number of target labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剑鬼完成签到,获得积分10
刚刚
1秒前
重要涔雨完成签到,获得积分10
1秒前
2秒前
huanghao完成签到,获得积分10
2秒前
快乐映雁发布了新的文献求助10
2秒前
Mor完成签到,获得积分10
2秒前
滕擎完成签到,获得积分10
2秒前
啊锐完成签到,获得积分10
3秒前
ML应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
Ganlou应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
慕容松完成签到,获得积分10
3秒前
yangya应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
liuwei发布了新的文献求助10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
huo应助科研通管家采纳,获得10
3秒前
Sandrine应助科研通管家采纳,获得10
3秒前
Ganlou应助科研通管家采纳,获得10
4秒前
从容的戎完成签到,获得积分10
4秒前
4秒前
还单身的笑翠完成签到 ,获得积分20
4秒前
36456657应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
1122完成签到,获得积分10
5秒前
先一完成签到 ,获得积分10
5秒前
6秒前
科研钓鱼佬完成签到,获得积分10
6秒前
d邓军伟发布了新的文献求助10
6秒前
科研通AI2S应助袁思宇采纳,获得10
6秒前
坦率雁卉完成签到,获得积分10
7秒前
思源应助Yanxb采纳,获得10
7秒前
Vivian完成签到,获得积分10
7秒前
Zetlynn完成签到,获得积分10
8秒前
Andrew完成签到 ,获得积分10
8秒前
ikun发布了新的文献求助10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311408
求助须知:如何正确求助?哪些是违规求助? 2944145
关于积分的说明 8517601
捐赠科研通 2619516
什么是DOI,文献DOI怎么找? 1432421
科研通“疑难数据库(出版商)”最低求助积分说明 664655
邀请新用户注册赠送积分活动 649867