亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain Adaptation for Remote Sensing Image Semantic Segmentation: An Integrated Approach of Contrastive Learning and Adversarial Learning

计算机科学 人工智能 鉴别器 特征学习 模式识别(心理学) 分割 代表(政治) 相似性(几何) 特征(语言学) 匹配(统计) 特征提取 图像(数学) 数学 电信 语言学 哲学 统计 探测器 政治 政治学 法学
作者
Lubin Bai,Shihong Du,Xiuyuan Zhang,Haoyu Wang,Bo Liu,Song Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:34
标识
DOI:10.1109/tgrs.2022.3198972
摘要

Although semantic segmentation models based on deep neural networks (DNNs) have achieved excellent results, generalizing well from one remote sensing dataset (source domain) to another dataset with different acquisition conditions (target domain) remains a major challenge. Many domain adaptation (DA) approaches have been proposed to address this problem. DA aims to help DNNs learn a generalizable representation space in which source and target domains have similar feature distributions, but most of the existing DA approaches have difficulty in aligning the high-dimensional image representations of two domains directly. In this study, we proposed a model integrating contrastive learning and adversarial learning in a unified framework for aligning two domains in both representation space and spatial layout. Specifically, the model consists of a semantic segmentation network for feature extraction and two branches for DA. The first branch is used for adaptation in representation space directly by a proposed pixelwise contrastive loss, while the second branch is used for adaptation in predicted results to help two domains have similar spatial layouts through a novel but simple entropy-based similarity discriminator. Additionally, a training strategy called category similarity matching sampling was proposed to provide source and target image pairs with similar category composition for each training iteration, which can help the two branches work better. Extensive experiments indicated that the two branches can benefit each other to gain a superior performance and DA pretraining by our methods can achieve impressive results with only a small number of target labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
16秒前
宣若剑发布了新的文献求助10
24秒前
Murphy完成签到,获得积分10
38秒前
浮游应助科研通管家采纳,获得10
52秒前
mm应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
田様应助科研启动采纳,获得30
59秒前
1分钟前
你嵙这个期刊没买完成签到,获得积分10
1分钟前
li发布了新的文献求助20
1分钟前
li完成签到,获得积分20
1分钟前
1分钟前
嘻嘻哈哈完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
apple发布了新的文献求助10
2分钟前
2分钟前
Conner完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
xxx发布了新的文献求助10
2分钟前
嵐酱布响堪论文完成签到,获得积分10
3分钟前
Jessica完成签到,获得积分10
3分钟前
3分钟前
4分钟前
aa111发布了新的文献求助10
4分钟前
完美世界应助aa111采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221