Domain Adaptation for Remote Sensing Image Semantic Segmentation: An Integrated Approach of Contrastive Learning and Adversarial Learning

计算机科学 人工智能 鉴别器 特征学习 模式识别(心理学) 分割 代表(政治) 相似性(几何) 特征(语言学) 匹配(统计) 特征提取 图像(数学) 数学 电信 语言学 哲学 统计 探测器 政治 政治学 法学
作者
Lubin Bai,Shihong Du,Xiuyuan Zhang,Haoyu Wang,Bo Liu,Song Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:34
标识
DOI:10.1109/tgrs.2022.3198972
摘要

Although semantic segmentation models based on deep neural networks (DNNs) have achieved excellent results, generalizing well from one remote sensing dataset (source domain) to another dataset with different acquisition conditions (target domain) remains a major challenge. Many domain adaptation (DA) approaches have been proposed to address this problem. DA aims to help DNNs learn a generalizable representation space in which source and target domains have similar feature distributions, but most of the existing DA approaches have difficulty in aligning the high-dimensional image representations of two domains directly. In this study, we proposed a model integrating contrastive learning and adversarial learning in a unified framework for aligning two domains in both representation space and spatial layout. Specifically, the model consists of a semantic segmentation network for feature extraction and two branches for DA. The first branch is used for adaptation in representation space directly by a proposed pixelwise contrastive loss, while the second branch is used for adaptation in predicted results to help two domains have similar spatial layouts through a novel but simple entropy-based similarity discriminator. Additionally, a training strategy called category similarity matching sampling was proposed to provide source and target image pairs with similar category composition for each training iteration, which can help the two branches work better. Extensive experiments indicated that the two branches can benefit each other to gain a superior performance and DA pretraining by our methods can achieve impressive results with only a small number of target labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
逐风给逐风的求助进行了留言
4秒前
科研通AI5应助灌饼采纳,获得30
4秒前
Owen应助Zzzzzzzzzzz采纳,获得10
5秒前
6秒前
7秒前
巫马秋寒应助笑点低可乐采纳,获得10
7秒前
xuex1完成签到,获得积分10
7秒前
情怀应助阳光的雁山采纳,获得10
9秒前
斯文败类应助jy采纳,获得10
9秒前
9秒前
日月轮回发布了新的文献求助10
10秒前
36456657应助木香采纳,获得10
11秒前
无花果应助ns采纳,获得30
11秒前
刘铭晨完成签到,获得积分10
11秒前
12秒前
YY发布了新的文献求助10
12秒前
Rrr发布了新的文献求助10
13秒前
学术蠕虫发布了新的文献求助10
13秒前
13秒前
miumiuka完成签到,获得积分10
14秒前
个性的薯片应助lyt采纳,获得20
16秒前
sweetbearm应助寒涛先生采纳,获得10
17秒前
wanci应助YY采纳,获得10
18秒前
18秒前
19秒前
19秒前
20秒前
HC完成签到 ,获得积分10
21秒前
姚姚的赵赵完成签到,获得积分10
21秒前
JamesPei应助大豪子采纳,获得30
22秒前
jy发布了新的文献求助10
22秒前
22秒前
陆靖易发布了新的文献求助10
22秒前
LQW完成签到,获得积分20
23秒前
24秒前
plant完成签到,获得积分10
24秒前
lyt完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808