Domain Adaptation for Remote Sensing Image Semantic Segmentation: An Integrated Approach of Contrastive Learning and Adversarial Learning

计算机科学 人工智能 鉴别器 特征学习 模式识别(心理学) 分割 代表(政治) 相似性(几何) 特征(语言学) 匹配(统计) 特征提取 图像(数学) 数学 电信 语言学 哲学 统计 探测器 政治 政治学 法学
作者
Lubin Bai,Shihong Du,Xiuyuan Zhang,Haoyu Wang,Bo Liu,Song Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:34
标识
DOI:10.1109/tgrs.2022.3198972
摘要

Although semantic segmentation models based on deep neural networks (DNNs) have achieved excellent results, generalizing well from one remote sensing dataset (source domain) to another dataset with different acquisition conditions (target domain) remains a major challenge. Many domain adaptation (DA) approaches have been proposed to address this problem. DA aims to help DNNs learn a generalizable representation space in which source and target domains have similar feature distributions, but most of the existing DA approaches have difficulty in aligning the high-dimensional image representations of two domains directly. In this study, we proposed a model integrating contrastive learning and adversarial learning in a unified framework for aligning two domains in both representation space and spatial layout. Specifically, the model consists of a semantic segmentation network for feature extraction and two branches for DA. The first branch is used for adaptation in representation space directly by a proposed pixelwise contrastive loss, while the second branch is used for adaptation in predicted results to help two domains have similar spatial layouts through a novel but simple entropy-based similarity discriminator. Additionally, a training strategy called category similarity matching sampling was proposed to provide source and target image pairs with similar category composition for each training iteration, which can help the two branches work better. Extensive experiments indicated that the two branches can benefit each other to gain a superior performance and DA pretraining by our methods can achieve impressive results with only a small number of target labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小彭友完成签到,获得积分10
1秒前
搜集达人应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
奥特超曼应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
奥特超曼应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
ding应助胡凯采纳,获得10
3秒前
tzjz_zrz完成签到,获得积分10
5秒前
幸福大白发布了新的文献求助10
7秒前
小俞完成签到,获得积分10
7秒前
7秒前
xh完成签到,获得积分10
9秒前
Strongly完成签到,获得积分10
9秒前
56565发布了新的文献求助10
9秒前
JamesPei应助张浩采纳,获得10
10秒前
慕青应助怡然的一斩采纳,获得10
13秒前
幸福大白发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
康康完成签到 ,获得积分10
16秒前
顾矜应助q792309106采纳,获得10
18秒前
lucas发布了新的文献求助10
18秒前
18秒前
核桃发布了新的文献求助10
20秒前
23秒前
lucas完成签到,获得积分10
25秒前
28秒前
FashionBoy应助chrysophoron采纳,获得10
30秒前
q792309106发布了新的文献求助10
32秒前
wuyisha完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712