生物膜
群体感应
厌氧氨氧化菌
高丝氨酸
化学
胞外聚合物
多糖
微生物学
食品科学
生物化学
细菌
反硝化
生物
氮气
有机化学
反硝化细菌
遗传学
作者
Yi Zhang,Jing Wang,Jun Li,Pengyuan Wei,R.C. Luo,Hao Han
标识
DOI:10.1016/j.envres.2022.114097
摘要
The start-up of anaerobic ammonia oxidation (ANAMMOX) processes at low temperatures is quite difficult. In this study, the fast start-up (43 days) of ANAMMOX biofilm processes at 18 ± 3 °C was achieved by adding enhanced ANAMMOX granules (LT-granules) into the inoculated denitrification sludge. The results showed that the addition of LT-granules significantly reduced the duration of the three start-up phases (cell lysis phase, activity lag phase, and activity elevation phase) of reactor R2 compared with the control group R1 without LT-granules. It was demonstrated that LT-granules released high contents of N-hexanoyl-DL-homoserine lactone (C6-HSL), N-octanoyl-DL-homoserine lactone (C8-HSL), and N-3-oxohexanoyl-L-homoserine lactone (3OC6-HSL). The C6-HSL and C8-HSL from LT-granules were strongly positively correlated with the concentrations of polysaccharides (TB-PS) and proteins (TB-PN) in tightly bound extracellular polymeric substances (TB-EPS) in R2 biofilms, respectively. Thus, LT-granules promoted the release of TB-PS and TB-PN from the biofilm in R2 during activity lag and activity elevation phases, improving the biofilm adhesion performance. Furthermore, it was proved that the C6-HSL, C8-HSL, and 3OC6-HSL from LT-granules significantly stimulated the relative abundance of Candidatus Brocadia genus and the expression of functional genes hzo and hzsA in R2 biofilms during activity lag and activity elevation phases. These are the main reasons why adding LT-granules promoted the start-up of reactor R2 at 18 ± 3 °C effectively. This study is the first work to accelerate the start-up of the ANAMMOX biofilm system at the low temperature by the economical quorum sensing (QS) regulation based on endogenous N-acyl-homoserine lactone signals (AHLs) and supply a new way for the rapid start-up of ANAMMOX processes in the low-temperature environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI