Exploring the potential of machine learning for more efficient development and production of biopharmaceuticals

设计质量 生物制药 关键质量属性 生物过程 计算机科学 质量(理念) 生化工程 过程(计算) 过程分析技术 医药制造业 灵活性(工程) 自动化 上游(联网) 制造工程 风险分析(工程) 人工智能 下游(制造业) 工程类 生物技术 运营管理 业务 数学 机械工程 生物信息学 哲学 统计 认识论 化学工程 生物 操作系统 计算机网络
作者
Amita Puranik,Prajakta Dandekar,Ratnesh Jain
出处
期刊:Biotechnology Progress [Wiley]
卷期号:38 (6) 被引量:30
标识
DOI:10.1002/btpr.3291
摘要

Abstract Principles of Industry 4.0 direct us to predict how pharmaceutical operations and regulations may exist with automation, digitization, artificial intelligence (AI), and real time data acquisition. Machine learning (ML), a sub‐discipline of AI, involves the use of statistical tools to extract the desired information either through understanding the underlying patterns in the information or by development of mathematical relationships among the critical process parameters (CPPs) and critical quality attributes (CQAs) of biopharmaceuticals. ML is still in its infancy for directly supporting the quality‐by‐design based development and manufacturing of biopharmaceuticals. However, adoption of ML‐based models in place of conventional multi‐variate‐data‐analysis (MVDA) is increasing with the accumulation of large‐scale data. This has been majorly contributed by the real‐time monitoring of process variables and quality attributes of products through the implementation of process analytical technology in biopharmaceutical manufacturing. All aspects of healthcare, from drug design to product distribution, are complex and multidimensional. Thus, ML‐based approaches are being applied to achieve sophistication, accuracy, flexibility and agility in all these areas. This review discusses the potential of ML for addressing the complex issues in diverse areas of biopharmaceutical development, such as biopharmaceuticals design and assessment of early stage development, upstream and downstream process development, analysis, characterization and prediction of post‐translational modifications (PTMs), formulation, and stability studies. Moreover, the challenges in acquisition, cleaning and structuring the bioprocess data, which is one of the major hurdles in implementation of ML in biopharma industry, have also been discussed. Regulatory perspectives on implementation of AI/ML in the biopharma sector have also been briefly discussed. This article is a bird's eye view on the recent developments and applications of ML in overcoming the challenges for adopting “Industry – 4.0” in the biopharma industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gdh发布了新的文献求助10
1秒前
2秒前
3秒前
一叶知秋完成签到,获得积分0
3秒前
3秒前
4秒前
5秒前
黄油包发布了新的文献求助10
6秒前
风思雅发布了新的文献求助30
7秒前
tzy完成签到,获得积分10
7秒前
贪玩草丛完成签到,获得积分10
7秒前
一叶知秋发布了新的文献求助10
8秒前
lian给lian的求助进行了留言
9秒前
JamesPei应助Wo了喝采纳,获得10
9秒前
脑洞疼应助专注大门采纳,获得10
9秒前
10秒前
卷卷516发布了新的文献求助10
10秒前
orixero应助平淡南霜采纳,获得10
11秒前
11秒前
科研废物发布了新的文献求助10
12秒前
Ava应助小郭不洗锅采纳,获得10
13秒前
Hello应助风中的冥王星采纳,获得10
14秒前
Lucas应助Hai采纳,获得10
14秒前
你的背包发布了新的文献求助10
15秒前
犹豫的牛排完成签到,获得积分10
16秒前
无奈怀曼发布了新的文献求助10
16秒前
16秒前
zhuxl应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得30
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得30
18秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得30
18秒前
Owen应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462918
求助须知:如何正确求助?哪些是违规求助? 3056419
关于积分的说明 9052032
捐赠科研通 2746128
什么是DOI,文献DOI怎么找? 1506822
科研通“疑难数据库(出版商)”最低求助积分说明 696204
邀请新用户注册赠送积分活动 695747