A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at human level

计算机科学 水准点(测量) 人工神经网络 线性代数 编码(集合论) 人工智能 机器学习 算法 域代数上的 理论计算机科学
作者
Iddo Drori,Sarah Zhang,Reece Shuttleworth,Leonard Tang,Albert Lu,Elizabeth Ke,Kevin Liu,Linda Chen,Sunny Tran,Newman Cheng,Roman Wang,Nikhil Singh,Taylor L. Patti,Jayson Lynch,A. Shporer,Nakul Verma,Eugene Wu,Gilbert Strang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (32) 被引量:1
标识
DOI:10.1073/pnas.2123433119
摘要

We demonstrate that a neural network pretrained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI’s Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a dataset of questions from Massachusetts Institute of Technology (MIT)’s largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University’s Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pretrained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8 to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work automatically solves university-level mathematics course questions at a human level and explains and generates university-level mathematics course questions at scale, a milestone for higher education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Colossus完成签到,获得积分10
1秒前
3秒前
闪闪寒云完成签到 ,获得积分10
3秒前
3秒前
4秒前
CipherSage应助周曼玉采纳,获得10
7秒前
7秒前
7秒前
追忆应助zhhc135采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
贝利亚发布了新的文献求助20
9秒前
沉默的香氛完成签到 ,获得积分10
10秒前
14秒前
斯文败类应助王志霞采纳,获得10
15秒前
15秒前
15秒前
17秒前
19秒前
徐逊发布了新的文献求助10
19秒前
ZhaoYu发布了新的文献求助10
20秒前
不走寻常路完成签到,获得积分10
21秒前
mawenyu发布了新的文献求助10
21秒前
21秒前
野原向日葵完成签到,获得积分10
22秒前
会咩的嘉人璐完成签到,获得积分10
23秒前
23秒前
贝利亚完成签到,获得积分10
24秒前
善学以致用应助lab采纳,获得10
24秒前
陆驳发布了新的文献求助10
25秒前
26秒前
芽芽豆完成签到 ,获得积分10
27秒前
搜集达人应助cc采纳,获得10
27秒前
27秒前
打打应助oscarkwan采纳,获得10
27秒前
yueyueyahoo发布了新的文献求助10
29秒前
29秒前
隐形曼青应助婷婷采纳,获得10
30秒前
33秒前
35秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959198
求助须知:如何正确求助?哪些是违规求助? 3505502
关于积分的说明 11124195
捐赠科研通 3237231
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824