A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at human level

计算机科学 水准点(测量) 人工神经网络 线性代数 编码(集合论) 人工智能 机器学习 算法 域代数上的 理论计算机科学
作者
Iddo Drori,Sarah Zhang,Reece Shuttleworth,Leonard Tang,Albert Lu,Elizabeth Ke,Kevin Liu,Linda Chen,Sunny Tran,Newman Cheng,Roman Wang,Nikhil Singh,Taylor L. Patti,Jayson Lynch,A. Shporer,Nakul Verma,Eugene Wu,Gilbert Strang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (32) 被引量:1
标识
DOI:10.1073/pnas.2123433119
摘要

We demonstrate that a neural network pretrained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI’s Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a dataset of questions from Massachusetts Institute of Technology (MIT)’s largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University’s Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pretrained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8 to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work automatically solves university-level mathematics course questions at a human level and explains and generates university-level mathematics course questions at scale, a milestone for higher education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晓彤发布了新的文献求助10
1秒前
1秒前
禹晓兰发布了新的文献求助10
1秒前
1秒前
孙琳发布了新的文献求助10
1秒前
科研废物发布了新的文献求助20
1秒前
kofd完成签到,获得积分10
2秒前
KCMd完成签到,获得积分10
3秒前
3秒前
Beta发布了新的文献求助10
3秒前
碧蓝丹秋完成签到,获得积分10
4秒前
蔺亦丝完成签到,获得积分10
4秒前
一堃发布了新的文献求助10
4秒前
春夏秋冬发布了新的文献求助10
5秒前
林菽禾完成签到,获得积分10
5秒前
玛卡巴卡完成签到,获得积分10
5秒前
YQ发布了新的文献求助10
5秒前
6秒前
6秒前
zigzag完成签到,获得积分10
6秒前
充电宝应助麋鹿采纳,获得10
7秒前
SC30发布了新的文献求助10
7秒前
zcb发布了新的文献求助10
7秒前
puny完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
龙藏在云里完成签到,获得积分10
8秒前
你好完成签到,获得积分10
8秒前
9秒前
9秒前
Kis Sealed发布了新的文献求助10
9秒前
hklong完成签到 ,获得积分10
9秒前
怕黑海冬发布了新的文献求助10
9秒前
文艺的老太完成签到,获得积分10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
桐桐应助CY采纳,获得10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143314
求助须知:如何正确求助?哪些是违规求助? 2794476
关于积分的说明 7811257
捐赠科研通 2450676
什么是DOI,文献DOI怎么找? 1303944
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386