A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at human level

计算机科学 水准点(测量) 人工神经网络 线性代数 编码(集合论) 人工智能 机器学习 算法 域代数上的 理论计算机科学
作者
Iddo Drori,Sarah Zhang,Reece Shuttleworth,Leonard Tang,Albert Lu,Elizabeth Ke,Kevin Liu,Linda Chen,Sunny Tran,Newman Cheng,Roman Wang,Nikhil Singh,Taylor L. Patti,Jayson Lynch,A. Shporer,Nakul Verma,Eugene Wu,Gilbert Strang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (32) 被引量:1
标识
DOI:10.1073/pnas.2123433119
摘要

We demonstrate that a neural network pretrained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI’s Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a dataset of questions from Massachusetts Institute of Technology (MIT)’s largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University’s Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pretrained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8 to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work automatically solves university-level mathematics course questions at a human level and explains and generates university-level mathematics course questions at scale, a milestone for higher education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6.1应助YJDlXX采纳,获得10
2秒前
端庄一刀完成签到 ,获得积分10
3秒前
王颖超完成签到,获得积分10
3秒前
111完成签到 ,获得积分10
3秒前
朻安完成签到,获得积分10
4秒前
淡然妙松完成签到,获得积分10
4秒前
麻瓜完成签到,获得积分10
5秒前
小白完成签到 ,获得积分10
5秒前
5秒前
wanci应助mochou采纳,获得10
6秒前
宝玉发布了新的文献求助10
6秒前
6秒前
sikh完成签到,获得积分10
7秒前
邢克宇发布了新的文献求助10
7秒前
科研通AI2S应助hhllhh采纳,获得30
7秒前
7秒前
7秒前
hhh完成签到,获得积分10
9秒前
扬之水完成签到,获得积分20
10秒前
无极微光应助Liao采纳,获得20
10秒前
YangSY发布了新的文献求助10
10秒前
11秒前
Akim应助腼腆的天亦采纳,获得10
12秒前
刘艳阳完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
CodeCraft应助一阵风采纳,获得10
12秒前
朴实的忆秋完成签到,获得积分10
12秒前
酷酷的新筠完成签到,获得积分10
12秒前
Jackey1ov3发布了新的文献求助10
12秒前
完美世界应助疯狂大脑壳采纳,获得10
14秒前
14秒前
bi应助Grace采纳,获得10
16秒前
16秒前
16秒前
自转无风完成签到,获得积分10
17秒前
Lynie发布了新的文献求助10
17秒前
辛勤灯泡完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488