A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at human level

计算机科学 水准点(测量) 人工神经网络 线性代数 编码(集合论) 人工智能 机器学习 算法 域代数上的 理论计算机科学
作者
Iddo Drori,Sarah Zhang,Reece Shuttleworth,Leonard Tang,Albert Lu,Elizabeth Ke,Kevin Liu,Linda Chen,Sunny Tran,Newman Cheng,Roman Wang,Nikhil Singh,Taylor L. Patti,Jayson Lynch,A. Shporer,Nakul Verma,Eugene Wu,Gilbert Strang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (32) 被引量:1
标识
DOI:10.1073/pnas.2123433119
摘要

We demonstrate that a neural network pretrained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI’s Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a dataset of questions from Massachusetts Institute of Technology (MIT)’s largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University’s Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pretrained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8 to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work automatically solves university-level mathematics course questions at a human level and explains and generates university-level mathematics course questions at scale, a milestone for higher education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尼克的朱迪完成签到,获得积分10
刚刚
刚刚
大个应助谷大喵唔采纳,获得10
刚刚
23发布了新的文献求助10
刚刚
简单的铃铛完成签到 ,获得积分10
1秒前
1秒前
1秒前
科研通AI2S应助体贴啤酒采纳,获得10
1秒前
2秒前
大模型应助Water103采纳,获得10
2秒前
3秒前
儒雅沛凝发布了新的文献求助10
3秒前
3秒前
DXXX发布了新的文献求助10
4秒前
小不溜完成签到 ,获得积分10
4秒前
王汉韬发布了新的文献求助10
4秒前
科研通AI2S应助咕噜仔采纳,获得20
4秒前
11111111完成签到,获得积分10
4秒前
NexusExplorer应助皮蛋瘦肉周采纳,获得10
4秒前
5秒前
zbearupz完成签到,获得积分10
5秒前
xiao发布了新的文献求助10
6秒前
7秒前
7秒前
conghuiqu完成签到,获得积分10
7秒前
Superman完成签到 ,获得积分10
7秒前
哈哈呀发布了新的文献求助10
7秒前
大模型应助Yuki0616采纳,获得10
7秒前
牛肉干发布了新的文献求助10
8秒前
赘婿应助木子采纳,获得10
8秒前
JERRY发布了新的文献求助10
8秒前
木桶人plus完成签到,获得积分10
8秒前
8秒前
啦啦发布了新的文献求助10
9秒前
歪比巴卜完成签到,获得积分10
9秒前
star完成签到 ,获得积分10
9秒前
风中以菱发布了新的文献求助10
9秒前
田様应助lbx采纳,获得10
9秒前
9秒前
成就幼荷发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672