A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at human level

计算机科学 水准点(测量) 人工神经网络 线性代数 编码(集合论) 人工智能 机器学习 算法 域代数上的 理论计算机科学
作者
Iddo Drori,Sarah Zhang,Reece Shuttleworth,Leonard Tang,Albert Lu,Elizabeth Ke,Kevin Liu,Linda Chen,Sunny Tran,Newman Cheng,Roman Wang,Nikhil Singh,Taylor L. Patti,Jayson Lynch,A. Shporer,Nakul Verma,Eugene Wu,Gilbert Strang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (32) 被引量:1
标识
DOI:10.1073/pnas.2123433119
摘要

We demonstrate that a neural network pretrained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI’s Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a dataset of questions from Massachusetts Institute of Technology (MIT)’s largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University’s Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pretrained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8 to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work automatically solves university-level mathematics course questions at a human level and explains and generates university-level mathematics course questions at scale, a milestone for higher education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹冬子程完成签到,获得积分10
刚刚
Function完成签到,获得积分10
刚刚
一颗红葡萄完成签到 ,获得积分10
刚刚
病猫完成签到,获得积分10
1秒前
FashionBoy应助mirror采纳,获得10
1秒前
1秒前
子车茗应助guozizi采纳,获得30
1秒前
1秒前
慕青应助有魅力的含海采纳,获得10
1秒前
自由薯片完成签到,获得积分10
2秒前
草莓月亮完成签到,获得积分20
2秒前
wanci应助菲菲公主采纳,获得10
2秒前
huangtian205完成签到,获得积分20
3秒前
比莉爱历史完成签到,获得积分10
3秒前
传奇3应助小乖采纳,获得10
3秒前
表里醉发布了新的文献求助10
4秒前
所爱皆在完成签到 ,获得积分10
4秒前
4秒前
小5老师完成签到,获得积分10
4秒前
李爱国应助指北针采纳,获得10
4秒前
5秒前
luffy完成签到 ,获得积分10
5秒前
5秒前
我是老大应助优雅老六采纳,获得10
5秒前
5秒前
等等等等完成签到,获得积分10
5秒前
画大饼发布了新的文献求助10
5秒前
6秒前
123~!完成签到,获得积分10
6秒前
挖掘机完成签到,获得积分10
6秒前
6秒前
luyunxing完成签到,获得积分10
7秒前
zxy929600959完成签到,获得积分10
7秒前
7秒前
日匀完成签到,获得积分20
8秒前
Sandwich完成签到,获得积分20
8秒前
karan完成签到,获得积分10
8秒前
Evelyn完成签到,获得积分10
8秒前
10秒前
XW完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824