亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oculomics for sarcopenia prediction: a machine learning approach toward predictive, preventive, and personalized medicine

肌萎缩 医学 背景(考古学) 白内障 接收机工作特性 全国健康与营养检查调查 内科学 优势比 物理疗法 物理医学与康复 人口 眼科 环境卫生 古生物学 生物
作者
Bo Ram Kim,Tae Keun Yoo,Hoon Yub Kim,Ik Hee Ryu,Jin Kuk Kim,In Sik Lee,Jung Soo Kim,Donghyeok Shin,Young-Sang Kim,Bom Taeck Kim
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (3): 367-382 被引量:19
标识
DOI:10.1007/s13167-022-00292-3
摘要

Sarcopenia is characterized by a gradual loss of skeletal muscle mass and strength with increased adverse outcomes. Recently, large-scale epidemiological studies have demonstrated a relationship between several chronic disorders and ocular pathological conditions using an oculomics approach. We hypothesized that sarcopenia can be predicted through eye examinations, without invasive tests or radiologic evaluations in the context of predictive, preventive, and personalized medicine (PPPM/3PM).We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES). The training set (80%, randomly selected from 2008 to 2010) data were used to construct the machine learning models. Internal (20%, randomly selected from 2008 to 2010) and external (from the KNHANES 2011) validation sets were used to assess the ability to predict sarcopenia. We included 8092 participants in the final dataset. Machine learning models (XGBoost) were trained on ophthalmological examinations and demographic factors to detect sarcopenia.In the exploratory analysis, decreased levator function (odds ratio [OR], 1.41; P value <0.001), cataracts (OR, 1.31; P value = 0.013), and age-related macular degeneration (OR, 1.38; P value = 0.026) were associated with an increased risk of sarcopenia in men. In women, an increased risk of sarcopenia was associated with blepharoptosis (OR, 1.23; P value = 0.038) and cataracts (OR, 1.29; P value = 0.010). The XGBoost technique showed areas under the receiver operating characteristic curves (AUCs) of 0.746 and 0.762 in men and women, respectively. The external validation achieved AUCs of 0.751 and 0.785 for men and women, respectively. For practical and fast hands-on experience with the predictive model for practitioners who may be willing to test the whole idea of sarcopenia prediction based on oculomics data, we developed a simple web-based calculator application (https://knhanesoculomics.github.io/sarcopenia) to predict the risk of sarcopenia and facilitate screening, based on the model established in this study.Sarcopenia is treatable before the vicious cycle of sarcopenia-related deterioration begins. Therefore, early identification of individuals at a high risk of sarcopenia is essential in the context of PPPM. Our oculomics-based approach provides an effective strategy for sarcopenia prediction. The proposed method shows promise in significantly increasing the number of patients diagnosed with sarcopenia, potentially facilitating earlier intervention. Through patient oculometric monitoring, various pathological factors related to sarcopenia can be simultaneously analyzed, and doctors can provide personalized medical services according to each cause. Further studies are needed to confirm whether such a prediction algorithm can be used in real-world clinical settings to improve the diagnosis of sarcopenia.The online version contains supplementary material available at 10.1007/s13167-022-00292-3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小A同学发布了新的文献求助10
6秒前
10秒前
13秒前
体贴花卷发布了新的文献求助10
16秒前
SiboN发布了新的文献求助10
19秒前
huaixup发布了新的文献求助10
39秒前
Hello应助小A同学采纳,获得10
45秒前
我是老大应助体贴花卷采纳,获得30
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
领导范儿应助欢欢采纳,获得10
1分钟前
胖小羊完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
体贴花卷发布了新的文献求助30
2分钟前
欢欢发布了新的文献求助10
2分钟前
SiboN完成签到,获得积分10
2分钟前
2分钟前
欢欢完成签到 ,获得积分10
2分钟前
FashionBoy应助体贴花卷采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
3分钟前
体贴花卷发布了新的文献求助10
3分钟前
体贴花卷发布了新的文献求助30
3分钟前
Bin完成签到,获得积分10
4分钟前
yys完成签到,获得积分10
4分钟前
yys10l完成签到,获得积分10
4分钟前
悠树里完成签到,获得积分10
5分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651072
求助须知:如何正确求助?哪些是违规求助? 4783024
关于积分的说明 15053037
捐赠科研通 4809826
什么是DOI,文献DOI怎么找? 2572636
邀请新用户注册赠送积分活动 1528630
关于科研通互助平台的介绍 1487670