Oculomics for sarcopenia prediction: a machine learning approach toward predictive, preventive, and personalized medicine

肌萎缩 医学 背景(考古学) 白内障 接收机工作特性 全国健康与营养检查调查 内科学 优势比 物理疗法 物理医学与康复 人口 眼科 环境卫生 生物 古生物学
作者
Bo Ram Kim,Tae Keun Yoo,Hoon Yub Kim,Ik Hee Ryu,Jin Kuk Kim,In Sik Lee,Jung Soo Kim,Donghyeok Shin,Young-Sang Kim,Bom Taeck Kim
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (3): 367-382 被引量:19
标识
DOI:10.1007/s13167-022-00292-3
摘要

Sarcopenia is characterized by a gradual loss of skeletal muscle mass and strength with increased adverse outcomes. Recently, large-scale epidemiological studies have demonstrated a relationship between several chronic disorders and ocular pathological conditions using an oculomics approach. We hypothesized that sarcopenia can be predicted through eye examinations, without invasive tests or radiologic evaluations in the context of predictive, preventive, and personalized medicine (PPPM/3PM).We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES). The training set (80%, randomly selected from 2008 to 2010) data were used to construct the machine learning models. Internal (20%, randomly selected from 2008 to 2010) and external (from the KNHANES 2011) validation sets were used to assess the ability to predict sarcopenia. We included 8092 participants in the final dataset. Machine learning models (XGBoost) were trained on ophthalmological examinations and demographic factors to detect sarcopenia.In the exploratory analysis, decreased levator function (odds ratio [OR], 1.41; P value <0.001), cataracts (OR, 1.31; P value = 0.013), and age-related macular degeneration (OR, 1.38; P value = 0.026) were associated with an increased risk of sarcopenia in men. In women, an increased risk of sarcopenia was associated with blepharoptosis (OR, 1.23; P value = 0.038) and cataracts (OR, 1.29; P value = 0.010). The XGBoost technique showed areas under the receiver operating characteristic curves (AUCs) of 0.746 and 0.762 in men and women, respectively. The external validation achieved AUCs of 0.751 and 0.785 for men and women, respectively. For practical and fast hands-on experience with the predictive model for practitioners who may be willing to test the whole idea of sarcopenia prediction based on oculomics data, we developed a simple web-based calculator application (https://knhanesoculomics.github.io/sarcopenia) to predict the risk of sarcopenia and facilitate screening, based on the model established in this study.Sarcopenia is treatable before the vicious cycle of sarcopenia-related deterioration begins. Therefore, early identification of individuals at a high risk of sarcopenia is essential in the context of PPPM. Our oculomics-based approach provides an effective strategy for sarcopenia prediction. The proposed method shows promise in significantly increasing the number of patients diagnosed with sarcopenia, potentially facilitating earlier intervention. Through patient oculometric monitoring, various pathological factors related to sarcopenia can be simultaneously analyzed, and doctors can provide personalized medical services according to each cause. Further studies are needed to confirm whether such a prediction algorithm can be used in real-world clinical settings to improve the diagnosis of sarcopenia.The online version contains supplementary material available at 10.1007/s13167-022-00292-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小付完成签到,获得积分10
3秒前
Bonnie关注了科研通微信公众号
4秒前
4秒前
研路漫漫应助吴书维采纳,获得10
4秒前
小狗完成签到 ,获得积分10
5秒前
7秒前
慕青应助Boniu_wang采纳,获得10
9秒前
研路漫漫应助Xiaoxiao采纳,获得10
9秒前
江南烟雨如笙完成签到 ,获得积分10
9秒前
lp发布了新的文献求助10
11秒前
一直发布了新的文献求助10
11秒前
13秒前
Ava应助JacksonHe采纳,获得10
15秒前
15秒前
莫氓完成签到,获得积分10
16秒前
17秒前
wang完成签到 ,获得积分10
17秒前
打打应助Science采纳,获得10
17秒前
19秒前
研路漫漫发布了新的文献求助10
21秒前
22秒前
风清扬发布了新的文献求助30
22秒前
酷波er应助科研进化中采纳,获得10
22秒前
准了完成签到,获得积分20
24秒前
JamesPei应助义气绿柳采纳,获得10
26秒前
27秒前
宋祝福完成签到 ,获得积分10
27秒前
29秒前
30秒前
龙共发布了新的文献求助10
31秒前
JamesPei应助000采纳,获得10
32秒前
Science完成签到,获得积分10
32秒前
qwf完成签到 ,获得积分10
32秒前
Bonnie发布了新的文献求助10
34秒前
酷酷的冰真应助sct采纳,获得20
35秒前
HANGOVERG发布了新的文献求助30
35秒前
Science发布了新的文献求助10
36秒前
Cindy发布了新的文献求助10
36秒前
kai chen完成签到 ,获得积分0
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343