Oculomics for sarcopenia prediction: a machine learning approach toward predictive, preventive, and personalized medicine

肌萎缩 医学 背景(考古学) 白内障 接收机工作特性 全国健康与营养检查调查 内科学 优势比 物理疗法 物理医学与康复 人口 眼科 环境卫生 古生物学 生物
作者
Bo Ram Kim,Tae Keun Yoo,Hoon Yub Kim,Ik Hee Ryu,Jin Kuk Kim,In Sik Lee,Jung Soo Kim,Donghyeok Shin,Young-Sang Kim,Bom Taeck Kim
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (3): 367-382 被引量:19
标识
DOI:10.1007/s13167-022-00292-3
摘要

Sarcopenia is characterized by a gradual loss of skeletal muscle mass and strength with increased adverse outcomes. Recently, large-scale epidemiological studies have demonstrated a relationship between several chronic disorders and ocular pathological conditions using an oculomics approach. We hypothesized that sarcopenia can be predicted through eye examinations, without invasive tests or radiologic evaluations in the context of predictive, preventive, and personalized medicine (PPPM/3PM).We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES). The training set (80%, randomly selected from 2008 to 2010) data were used to construct the machine learning models. Internal (20%, randomly selected from 2008 to 2010) and external (from the KNHANES 2011) validation sets were used to assess the ability to predict sarcopenia. We included 8092 participants in the final dataset. Machine learning models (XGBoost) were trained on ophthalmological examinations and demographic factors to detect sarcopenia.In the exploratory analysis, decreased levator function (odds ratio [OR], 1.41; P value <0.001), cataracts (OR, 1.31; P value = 0.013), and age-related macular degeneration (OR, 1.38; P value = 0.026) were associated with an increased risk of sarcopenia in men. In women, an increased risk of sarcopenia was associated with blepharoptosis (OR, 1.23; P value = 0.038) and cataracts (OR, 1.29; P value = 0.010). The XGBoost technique showed areas under the receiver operating characteristic curves (AUCs) of 0.746 and 0.762 in men and women, respectively. The external validation achieved AUCs of 0.751 and 0.785 for men and women, respectively. For practical and fast hands-on experience with the predictive model for practitioners who may be willing to test the whole idea of sarcopenia prediction based on oculomics data, we developed a simple web-based calculator application (https://knhanesoculomics.github.io/sarcopenia) to predict the risk of sarcopenia and facilitate screening, based on the model established in this study.Sarcopenia is treatable before the vicious cycle of sarcopenia-related deterioration begins. Therefore, early identification of individuals at a high risk of sarcopenia is essential in the context of PPPM. Our oculomics-based approach provides an effective strategy for sarcopenia prediction. The proposed method shows promise in significantly increasing the number of patients diagnosed with sarcopenia, potentially facilitating earlier intervention. Through patient oculometric monitoring, various pathological factors related to sarcopenia can be simultaneously analyzed, and doctors can provide personalized medical services according to each cause. Further studies are needed to confirm whether such a prediction algorithm can be used in real-world clinical settings to improve the diagnosis of sarcopenia.The online version contains supplementary material available at 10.1007/s13167-022-00292-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星黛露发布了新的文献求助10
刚刚
1秒前
1秒前
刚睡醒发布了新的文献求助10
1秒前
鱼尾蓝完成签到 ,获得积分10
2秒前
2秒前
爆米花应助激情的凌晴采纳,获得30
2秒前
欢喜代萱发布了新的文献求助10
2秒前
XYZ完成签到,获得积分10
2秒前
上官若男应助xiaowang采纳,获得10
2秒前
彭于晏应助姜姜姜姜采纳,获得10
2秒前
2秒前
王博完成签到,获得积分10
3秒前
justdoit发布了新的文献求助10
3秒前
3秒前
4秒前
小茶发布了新的文献求助10
4秒前
4秒前
5秒前
大熊发布了新的文献求助10
5秒前
cmdan完成签到,获得积分10
6秒前
6秒前
情怀应助大豆终结者采纳,获得10
6秒前
nn发布了新的文献求助10
7秒前
7秒前
7秒前
Tting完成签到 ,获得积分10
7秒前
CC给CC的求助进行了留言
8秒前
8秒前
8秒前
8秒前
nini完成签到,获得积分20
9秒前
共享精神应助小小橙采纳,获得10
10秒前
DDD完成签到 ,获得积分10
10秒前
10秒前
酷波er应助挖井的人采纳,获得10
10秒前
所所应助朝朝采纳,获得10
10秒前
脑洞疼应助漂亮的念双采纳,获得10
11秒前
11秒前
yu完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961