亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oculomics for sarcopenia prediction: a machine learning approach toward predictive, preventive, and personalized medicine

肌萎缩 医学 背景(考古学) 白内障 接收机工作特性 全国健康与营养检查调查 内科学 优势比 物理疗法 物理医学与康复 人口 眼科 环境卫生 生物 古生物学
作者
Bo Ram Kim,Tae Keun Yoo,Hoon Yub Kim,Ik Hee Ryu,Jin Kuk Kim,In Sik Lee,Jung Soo Kim,Donghyeok Shin,Young-Sang Kim,Bom Taeck Kim
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (3): 367-382 被引量:19
标识
DOI:10.1007/s13167-022-00292-3
摘要

Sarcopenia is characterized by a gradual loss of skeletal muscle mass and strength with increased adverse outcomes. Recently, large-scale epidemiological studies have demonstrated a relationship between several chronic disorders and ocular pathological conditions using an oculomics approach. We hypothesized that sarcopenia can be predicted through eye examinations, without invasive tests or radiologic evaluations in the context of predictive, preventive, and personalized medicine (PPPM/3PM).We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES). The training set (80%, randomly selected from 2008 to 2010) data were used to construct the machine learning models. Internal (20%, randomly selected from 2008 to 2010) and external (from the KNHANES 2011) validation sets were used to assess the ability to predict sarcopenia. We included 8092 participants in the final dataset. Machine learning models (XGBoost) were trained on ophthalmological examinations and demographic factors to detect sarcopenia.In the exploratory analysis, decreased levator function (odds ratio [OR], 1.41; P value <0.001), cataracts (OR, 1.31; P value = 0.013), and age-related macular degeneration (OR, 1.38; P value = 0.026) were associated with an increased risk of sarcopenia in men. In women, an increased risk of sarcopenia was associated with blepharoptosis (OR, 1.23; P value = 0.038) and cataracts (OR, 1.29; P value = 0.010). The XGBoost technique showed areas under the receiver operating characteristic curves (AUCs) of 0.746 and 0.762 in men and women, respectively. The external validation achieved AUCs of 0.751 and 0.785 for men and women, respectively. For practical and fast hands-on experience with the predictive model for practitioners who may be willing to test the whole idea of sarcopenia prediction based on oculomics data, we developed a simple web-based calculator application (https://knhanesoculomics.github.io/sarcopenia) to predict the risk of sarcopenia and facilitate screening, based on the model established in this study.Sarcopenia is treatable before the vicious cycle of sarcopenia-related deterioration begins. Therefore, early identification of individuals at a high risk of sarcopenia is essential in the context of PPPM. Our oculomics-based approach provides an effective strategy for sarcopenia prediction. The proposed method shows promise in significantly increasing the number of patients diagnosed with sarcopenia, potentially facilitating earlier intervention. Through patient oculometric monitoring, various pathological factors related to sarcopenia can be simultaneously analyzed, and doctors can provide personalized medical services according to each cause. Further studies are needed to confirm whether such a prediction algorithm can be used in real-world clinical settings to improve the diagnosis of sarcopenia.The online version contains supplementary material available at 10.1007/s13167-022-00292-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
xxi发布了新的文献求助10
6秒前
无花果应助Shawn采纳,获得10
7秒前
江城一霸完成签到,获得积分10
9秒前
搜集达人应助mmyhn采纳,获得20
10秒前
快乐友灵完成签到,获得积分10
11秒前
贰鸟应助drtianyunhong采纳,获得10
12秒前
13秒前
小马甲应助xxi采纳,获得10
14秒前
领导范儿应助2212738190采纳,获得10
16秒前
xiao完成签到 ,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
养乐多敬你完成签到 ,获得积分10
22秒前
Wang发布了新的文献求助10
24秒前
西西完成签到,获得积分10
24秒前
29秒前
居蓝完成签到 ,获得积分10
32秒前
drtianyunhong发布了新的文献求助10
35秒前
JacekYu完成签到 ,获得积分10
50秒前
LMF完成签到 ,获得积分10
51秒前
彭于晏应助科研通管家采纳,获得30
54秒前
李金文应助科研通管家采纳,获得10
54秒前
李金文应助科研通管家采纳,获得10
54秒前
56秒前
59秒前
清风_breeze发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
不筝发布了新的文献求助30
1分钟前
情怀应助清风_breeze采纳,获得10
1分钟前
FashionBoy应助Victor66685采纳,获得60
1分钟前
祁连山的熊猫完成签到 ,获得积分0
1分钟前
天天快乐应助不筝采纳,获得10
1分钟前
芝士奶盖有点咸完成签到 ,获得积分10
1分钟前
领导范儿应助keeper王采纳,获得10
1分钟前
Yantuobio发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610666
求助须知:如何正确求助?哪些是违规求助? 4016498
关于积分的说明 12435370
捐赠科研通 3698166
什么是DOI,文献DOI怎么找? 2039273
邀请新用户注册赠送积分活动 1072120
科研通“疑难数据库(出版商)”最低求助积分说明 955796