Oculomics for sarcopenia prediction: a machine learning approach toward predictive, preventive, and personalized medicine

肌萎缩 医学 背景(考古学) 白内障 接收机工作特性 全国健康与营养检查调查 内科学 优势比 物理疗法 物理医学与康复 人口 眼科 环境卫生 生物 古生物学
作者
Bo Ram Kim,Tae Keun Yoo,Hoon Yub Kim,Ik Hee Ryu,Jin Kuk Kim,In Sik Lee,Jung Soo Kim,Donghyeok Shin,Young-Sang Kim,Bom Taeck Kim
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (3): 367-382 被引量:19
标识
DOI:10.1007/s13167-022-00292-3
摘要

Sarcopenia is characterized by a gradual loss of skeletal muscle mass and strength with increased adverse outcomes. Recently, large-scale epidemiological studies have demonstrated a relationship between several chronic disorders and ocular pathological conditions using an oculomics approach. We hypothesized that sarcopenia can be predicted through eye examinations, without invasive tests or radiologic evaluations in the context of predictive, preventive, and personalized medicine (PPPM/3PM).We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES). The training set (80%, randomly selected from 2008 to 2010) data were used to construct the machine learning models. Internal (20%, randomly selected from 2008 to 2010) and external (from the KNHANES 2011) validation sets were used to assess the ability to predict sarcopenia. We included 8092 participants in the final dataset. Machine learning models (XGBoost) were trained on ophthalmological examinations and demographic factors to detect sarcopenia.In the exploratory analysis, decreased levator function (odds ratio [OR], 1.41; P value <0.001), cataracts (OR, 1.31; P value = 0.013), and age-related macular degeneration (OR, 1.38; P value = 0.026) were associated with an increased risk of sarcopenia in men. In women, an increased risk of sarcopenia was associated with blepharoptosis (OR, 1.23; P value = 0.038) and cataracts (OR, 1.29; P value = 0.010). The XGBoost technique showed areas under the receiver operating characteristic curves (AUCs) of 0.746 and 0.762 in men and women, respectively. The external validation achieved AUCs of 0.751 and 0.785 for men and women, respectively. For practical and fast hands-on experience with the predictive model for practitioners who may be willing to test the whole idea of sarcopenia prediction based on oculomics data, we developed a simple web-based calculator application (https://knhanesoculomics.github.io/sarcopenia) to predict the risk of sarcopenia and facilitate screening, based on the model established in this study.Sarcopenia is treatable before the vicious cycle of sarcopenia-related deterioration begins. Therefore, early identification of individuals at a high risk of sarcopenia is essential in the context of PPPM. Our oculomics-based approach provides an effective strategy for sarcopenia prediction. The proposed method shows promise in significantly increasing the number of patients diagnosed with sarcopenia, potentially facilitating earlier intervention. Through patient oculometric monitoring, various pathological factors related to sarcopenia can be simultaneously analyzed, and doctors can provide personalized medical services according to each cause. Further studies are needed to confirm whether such a prediction algorithm can be used in real-world clinical settings to improve the diagnosis of sarcopenia.The online version contains supplementary material available at 10.1007/s13167-022-00292-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琳琳发布了新的文献求助10
2秒前
3秒前
6秒前
爱听歌的糖豆完成签到,获得积分10
7秒前
Hui完成签到,获得积分10
8秒前
iota发布了新的文献求助50
8秒前
8秒前
9秒前
曹欣雨发布了新的文献求助10
9秒前
cheers发布了新的文献求助10
12秒前
故渊完成签到,获得积分10
12秒前
宁雨歆发布了新的文献求助10
12秒前
14秒前
谦让的紫蓝完成签到,获得积分10
15秒前
16秒前
ezekiet完成签到 ,获得积分10
16秒前
曹欣雨完成签到,获得积分10
16秒前
晴雪水寒完成签到,获得积分10
16秒前
iota完成签到,获得积分10
17秒前
18秒前
23秒前
彭嘉嘉完成签到,获得积分10
23秒前
27秒前
28秒前
777完成签到,获得积分10
28秒前
黎明完成签到 ,获得积分10
30秒前
尊敬乐蕊发布了新的文献求助10
30秒前
30秒前
你倒是发啊应助qi88采纳,获得10
31秒前
清脆大树发布了新的文献求助10
31秒前
活力晓曼完成签到,获得积分10
32秒前
Max完成签到 ,获得积分10
33秒前
金不换发布了新的文献求助10
34秒前
上官若男应助cheers采纳,获得10
35秒前
Doctor Tang完成签到,获得积分10
35秒前
35秒前
XCHI完成签到 ,获得积分10
39秒前
立食劳栖发布了新的文献求助10
39秒前
Syj2468完成签到 ,获得积分10
40秒前
Adian完成签到,获得积分10
42秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342105
求助须知:如何正确求助?哪些是违规求助? 2969338
关于积分的说明 8638821
捐赠科研通 2649110
什么是DOI,文献DOI怎么找? 1450575
科研通“疑难数据库(出版商)”最低求助积分说明 671938
邀请新用户注册赠送积分活动 661098