A novel convolutional neural network with multiscale cascade midpoint residual for fault diagnosis of rolling bearings

级联 稳健性(进化) 残余物 计算机科学 卷积神经网络 过度拟合 中点 人工智能 模式识别(心理学) 算法 人工神经网络 数学 生物化学 基因 几何学 色谱法 化学
作者
Zhiqiang Chao,Tian Han
出处
期刊:Neurocomputing [Elsevier]
卷期号:506: 213-227 被引量:21
标识
DOI:10.1016/j.neucom.2022.07.022
摘要

• One new 1DCNN is established by adding a midpoint residual block before the middle layer. • A multiscale cascade structure is constructed to extract features from the original data. • The feature extraction capability is improved by multiscale cascade midpoint residual. • The anti-noise robustness is greatly improved by utilizing the ELU activation function. Convolutional Neural Network (CNN) has been widely used in mechanical fault diagnosis system, and has achieved satisfactory results. However, some limitations of the number of network layers and a single fixed convolution kernel are also exposed during performing the task of fault classification. To solve these problems, this paper proposes a multiscale cascade midpoint residual convolutional neural network (MSC-MpResCNN). Firstly, a new multiscale cascade structure is introduced to extract multi-resolution features contained in the original data. Secondly, the improved midpoint residual block is adopted in each branch of multiscale cascade structure to address deep network performance degradation. In addition, exponential linear unit (ELU) replaces the original linear rectification function, which makes the noise resistance of the model stronger and increasesthe robustness and generalization. L2 weight regularization and global average pooling (GAP) are applied to the model to avoid overfitting. The feasibility of the proposed method is validated by the experiments. The results indicates that the method can obtain higher fault recognition rate compared with previous methods by multiscale cascade midpoint residual block. Furthermore, the method has great anti-noise robustness under strong noise environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
边瑞明完成签到,获得积分10
刚刚
Wang发布了新的文献求助10
1秒前
Jenny应助拼搏思卉采纳,获得10
1秒前
1秒前
神勇的雅香应助不喝可乐采纳,获得10
1秒前
清脆的白开水完成签到,获得积分10
1秒前
Hello应助善良过客采纳,获得10
1秒前
现实的曼荷完成签到,获得积分10
1秒前
1秒前
2秒前
zyyyy完成签到,获得积分10
2秒前
dd完成签到,获得积分20
2秒前
2秒前
混子发布了新的文献求助10
2秒前
HYG完成签到,获得积分10
3秒前
二橦完成签到 ,获得积分10
3秒前
熊博士完成签到,获得积分10
4秒前
哲000发布了新的文献求助10
4秒前
丰富的世界完成签到 ,获得积分10
4秒前
5秒前
5秒前
路漫漫其修远兮完成签到,获得积分10
5秒前
GGZ发布了新的文献求助10
5秒前
啦啦啦发布了新的文献求助10
5秒前
6秒前
阿坤完成签到,获得积分10
7秒前
dd发布了新的文献求助10
8秒前
桐桐应助小智采纳,获得10
8秒前
九川完成签到,获得积分10
8秒前
混子完成签到,获得积分10
8秒前
8秒前
9秒前
Wang完成签到,获得积分10
9秒前
星辰大海应助Ll采纳,获得10
9秒前
Jasper应助妮儿采纳,获得10
10秒前
tododoto完成签到,获得积分10
10秒前
10秒前
淙淙柔水完成签到,获得积分0
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759