A novel convolutional neural network with multiscale cascade midpoint residual for fault diagnosis of rolling bearings

级联 稳健性(进化) 残余物 计算机科学 卷积神经网络 过度拟合 中点 人工智能 模式识别(心理学) 算法 人工神经网络 数学 生物化学 基因 几何学 色谱法 化学
作者
Zhiqiang Chao,Tian Han
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:506: 213-227 被引量:21
标识
DOI:10.1016/j.neucom.2022.07.022
摘要

• One new 1DCNN is established by adding a midpoint residual block before the middle layer. • A multiscale cascade structure is constructed to extract features from the original data. • The feature extraction capability is improved by multiscale cascade midpoint residual. • The anti-noise robustness is greatly improved by utilizing the ELU activation function. Convolutional Neural Network (CNN) has been widely used in mechanical fault diagnosis system, and has achieved satisfactory results. However, some limitations of the number of network layers and a single fixed convolution kernel are also exposed during performing the task of fault classification. To solve these problems, this paper proposes a multiscale cascade midpoint residual convolutional neural network (MSC-MpResCNN). Firstly, a new multiscale cascade structure is introduced to extract multi-resolution features contained in the original data. Secondly, the improved midpoint residual block is adopted in each branch of multiscale cascade structure to address deep network performance degradation. In addition, exponential linear unit (ELU) replaces the original linear rectification function, which makes the noise resistance of the model stronger and increasesthe robustness and generalization. L2 weight regularization and global average pooling (GAP) are applied to the model to avoid overfitting. The feasibility of the proposed method is validated by the experiments. The results indicates that the method can obtain higher fault recognition rate compared with previous methods by multiscale cascade midpoint residual block. Furthermore, the method has great anti-noise robustness under strong noise environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Zehn采纳,获得10
1秒前
1秒前
烟花应助白白采纳,获得10
1秒前
1秒前
feifei完成签到,获得积分10
2秒前
2秒前
小马甲应助runner采纳,获得10
2秒前
852应助cupid采纳,获得10
2秒前
甜美怜蕾发布了新的文献求助10
3秒前
3秒前
3秒前
小何完成签到,获得积分20
3秒前
九州发布了新的文献求助10
3秒前
feifei发布了新的文献求助10
4秒前
赵嘉钰发布了新的文献求助10
4秒前
无风海发布了新的文献求助10
5秒前
皓月星辰发布了新的文献求助10
5秒前
5秒前
山雀发布了新的文献求助10
5秒前
啦啦啦完成签到,获得积分10
6秒前
汉堡包应助restudy68采纳,获得10
6秒前
耍酷代柔发布了新的文献求助10
6秒前
6秒前
Akim应助勤劳的沛山采纳,获得10
6秒前
寻359发布了新的文献求助10
7秒前
香蕉孤风完成签到 ,获得积分10
7秒前
Lei完成签到,获得积分20
8秒前
bkagyin应助香蕉八宝粥采纳,获得10
8秒前
华仔应助小虫采纳,获得10
8秒前
mm发布了新的文献求助10
8秒前
结实的芷文完成签到,获得积分10
9秒前
9秒前
qwaszx123完成签到,获得积分20
9秒前
10秒前
Santasy发布了新的文献求助10
10秒前
11秒前
11秒前
Dr.Wang完成签到,获得积分10
11秒前
11秒前
脑洞疼应助清歌浊酒采纳,获得10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033