Adaptive key-frame selection-based facial expression recognition via multi-cue dynamic features hybrid fusion

关键帧 计算机科学 人工智能 面部表情 帧(网络) 模式识别(心理学) 表达式(计算机科学) 钥匙(锁) 水准点(测量) 特征(语言学) 特征选择 特征提取 计算机视觉 电信 哲学 语言学 计算机安全 程序设计语言 地理 大地测量学
作者
Bei Pan,Kaoru Hirota,Yaping Dai,Zhiyang Jia,Edwardo F. Fukushima,Jinhua She
出处
期刊:Information Sciences [Elsevier BV]
卷期号:660: 120138-120138 被引量:6
标识
DOI:10.1016/j.ins.2024.120138
摘要

A multi-cue dynamic features hybrid fusion (MDF-HF) method for video-based facial expression recognition is presented. It is composed of key-frame selection, multi-cue dynamic feature extraction, and information fusion components. An adaptive key-frame selection strategy is first designed in the training procedure to extract pivotal facial images from video sequences, addressing the challenge of imbalanced data distribution and improving data quality. The similarity threshold used for key-frame selection is automatically adjusted based on the number of image frames in each expression category, creating a flexible frame processing procedure. Multi-cue spatio-temporal feature descriptors are then designed to acquire diverse dynamic feature representations from the selected key-frame sequences. With parallel computation, different levels of semantic information are extracted simultaneously to explore facial expression deformation in video clips. To integrate features from multiple cues, a weighted stacking ensemble strategy is devised, preserving unique feature characteristics while exploring interrelationships among the multi-cue features. The proposed method is evaluated on three benchmark datasets: eNTERFACE'05, BAUM-1s, and AFEW, achieving average accuracies of 59.7%, 57.5%, and 54.7%, respectively. The MDF-HF method exhibits superior performance, compared to state-of-the-art methods in facial expression recognition, offering a robust solution for recognizing facial expressions in dynamic and unconstrained video scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未何发布了新的文献求助10
刚刚
能干冰露完成签到,获得积分10
1秒前
月光完成签到,获得积分10
2秒前
3秒前
wjhp007发布了新的文献求助10
3秒前
3秒前
4秒前
我是你爹发布了新的文献求助10
4秒前
CC发布了新的文献求助10
4秒前
4秒前
W111完成签到 ,获得积分10
4秒前
木木木木木完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Wei_Li完成签到,获得积分10
5秒前
旭旭完成签到,获得积分10
6秒前
6秒前
7秒前
夏沫完成签到,获得积分10
7秒前
Rainbow完成签到,获得积分10
7秒前
迷人的Jack发布了新的文献求助10
8秒前
czz完成签到,获得积分10
8秒前
闵其其完成签到,获得积分10
8秒前
8秒前
8秒前
晓湫发布了新的文献求助10
9秒前
9秒前
Wei_Li发布了新的文献求助10
9秒前
9秒前
elena发布了新的文献求助10
10秒前
小朱爱科研完成签到,获得积分20
10秒前
华仔应助韩医生口腔采纳,获得10
10秒前
王超完成签到 ,获得积分10
11秒前
lipeng发布了新的文献求助10
11秒前
11秒前
YiXianCoA发布了新的文献求助10
11秒前
12秒前
朱慧龙发布了新的文献求助10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306