转染
生物反应器
质粒
材料科学
病毒载体
蠕动泵
化学
重组DNA
DNA
物理
基因
生物化学
气象学
有机化学
作者
Yizong Hu,Barbara Eder,Jinghan Lin,Sixuan Li,Yining Zhu,Tza‐Huei Wang,Ting Guo,Hai‐Quan Mao
标识
DOI:10.1016/j.omtm.2024.101194
摘要
The transfection efficiency and stability of the delivery vehicles of plasmid DNA (pDNA) are critical metrics to ensure high-quality and high-yield production of viral vectors. We previously identified that the optimal size of pDNA/poly(ethylenimine) (PEI) transfection particles is 400–500 nm and developed a bottom-up assembly method to construct stable 400-nm pDNA/PEI particles and benchmarked their transfection efficiency in producing lentiviral vectors (LVVs). Here, we report scale-up production protocols for such transfection particles. Using a two-inlet confined impinging jet (CIJ) mixer with a dual syringe pump set-up, we produced a 1-L batch at a flow rate of 100 mL/min, and further scaled up this process with a larger CIJ mixer and a dual peristaltic pump array, allowing for continuous production at a flow rate of 1 L/min without a lot size limit. We demonstrated the scalability of this process with a 5-L lot and validated the quality of these 400-nm transfection particles against the target product profile, including physical properties, shelf and on-bench stability, transfection efficiency, and LVV production yield in both 15-mL bench culture and 2-L bioreactor runs. These results confirm the potential of this particle assembly process as a scalable manufacturing platform for viral vector production. The transfection efficiency and stability of the delivery vehicles of plasmid DNA (pDNA) are critical metrics to ensure high-quality and high-yield production of viral vectors. We previously identified that the optimal size of pDNA/poly(ethylenimine) (PEI) transfection particles is 400–500 nm and developed a bottom-up assembly method to construct stable 400-nm pDNA/PEI particles and benchmarked their transfection efficiency in producing lentiviral vectors (LVVs). Here, we report scale-up production protocols for such transfection particles. Using a two-inlet confined impinging jet (CIJ) mixer with a dual syringe pump set-up, we produced a 1-L batch at a flow rate of 100 mL/min, and further scaled up this process with a larger CIJ mixer and a dual peristaltic pump array, allowing for continuous production at a flow rate of 1 L/min without a lot size limit. We demonstrated the scalability of this process with a 5-L lot and validated the quality of these 400-nm transfection particles against the target product profile, including physical properties, shelf and on-bench stability, transfection efficiency, and LVV production yield in both 15-mL bench culture and 2-L bioreactor runs. These results confirm the potential of this particle assembly process as a scalable manufacturing platform for viral vector production.
科研通智能强力驱动
Strongly Powered by AbleSci AI