Art Image Inpainting with Style-guided Dual-branch Inpainting Network

修补 计算机科学 人工智能 对偶(语法数字) 计算机视觉 图像(数学) 风格(视觉艺术) 艺术 视觉艺术 文学类
作者
Quan Wang,Zichi Wang,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8026-8037 被引量:2
标识
DOI:10.1109/tmm.2024.3374963
摘要

Traditionally, art images have to be restored by professionals for a very long time. It is also possible to maintain the artistic value of damaged art images by digitizing them and restoring them through computer-aided means. However, existing advanced image inpainting methods are mainly intended for natural images and are not suitable for art images. Thus, we propose a novel style-guided dual-branch inpainting network (SDI-Net) to address the above-mentioned issue. Specifically, our SDI-Net consists of a style reconstruction (SR) branch and a style inpainting (SI) branch, in which the SR branch provides intermediate supervision (style and content supervision) for the SI branch. The SI branch performs art image inpainting with a coarse-to-fine approach. At the coarse inpainting stage, the content and style of art image are separated and preliminarily inpainted under the supervision of SI branch. In addition, we propose a class style learning (CSL) module to inpaint the style feature guided by the style label, which can provide more effective brushstrokes from the same class of art images. The coarse inpainted results can be obtained by fusing the inpainted style feature with the inpainted content feature. At the fine inpainting stage, a style attention (SA) module is proposed in the decoder to further refine the coarse inpainted results. We employ the style loss, the content loss, the multi-class style adversarial loss, and the reconstruction loss to jointly train the proposed SDI-Net. A variety of experiments demonstrate the effectiveness of the proposed method, which allows the filled brushstrokes to appear as realistic as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性梦蕊发布了新的文献求助10
刚刚
刚刚
Rencal发布了新的文献求助10
刚刚
随便取完成签到 ,获得积分10
刚刚
balabala发布了新的文献求助10
刚刚
1秒前
果冻信号完成签到,获得积分10
2秒前
还好发布了新的文献求助10
2秒前
2秒前
starkisses完成签到,获得积分10
2秒前
pp完成签到,获得积分10
3秒前
zhuan完成签到,获得积分10
3秒前
一行白鹭完成签到,获得积分20
3秒前
从容的宝马完成签到,获得积分10
4秒前
4秒前
称心寒松完成签到,获得积分10
5秒前
高梦祥发布了新的文献求助50
6秒前
还好完成签到,获得积分10
6秒前
6秒前
6秒前
眨眼完成签到,获得积分10
7秒前
从此刻开始关注了科研通微信公众号
7秒前
南兮发布了新的文献求助10
7秒前
7秒前
淡然冬灵发布了新的文献求助10
8秒前
xxx完成签到,获得积分10
8秒前
kol发布了新的文献求助10
8秒前
万能图书馆应助超帅沂采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
soss完成签到,获得积分10
10秒前
怕孤单完成签到,获得积分10
10秒前
10秒前
时闲应助balabala采纳,获得10
11秒前
long完成签到 ,获得积分10
11秒前
Rencal完成签到 ,获得积分10
11秒前
1蓝发布了新的文献求助10
12秒前
alverine发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635