亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Art Image Inpainting With Style-Guided Dual-Branch Inpainting Network

修补 计算机科学 人工智能 对偶(语法数字) 计算机视觉 图像(数学) 风格(视觉艺术) 艺术 视觉艺术 文学类
作者
Quan Wang,Zichi Wang,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8026-8037 被引量:7
标识
DOI:10.1109/tmm.2024.3374963
摘要

Traditionally, art images have to be restored by professionals for a very long time. It is also possible to maintain the artistic value of damaged art images by digitizing them and restoring them through computer-aided means. However, existing advanced image inpainting methods are mainly intended for natural images and are not suitable for art images. Thus, we propose a novel style-guided dual-branch inpainting network (SDI-Net) to address the above-mentioned issue. Specifically, our SDI-Net consists of a style reconstruction (SR) branch and a style inpainting (SI) branch, in which the SR branch provides intermediate supervision (style and content supervision) for the SI branch. The SI branch performs art image inpainting with a coarse-to-fine approach. At the coarse inpainting stage, the content and style of art image are separated and preliminarily inpainted under the supervision of SI branch. In addition, we propose a class style learning (CSL) module to inpaint the style feature guided by the style label, which can provide more effective brushstrokes from the same class of art images. The coarse inpainted results can be obtained by fusing the inpainted style feature with the inpainted content feature. At the fine inpainting stage, a style attention (SA) module is proposed in the decoder to further refine the coarse inpainted results. We employ the style loss, the content loss, the multi-class style adversarial loss, and the reconstruction loss to jointly train the proposed SDI-Net. A variety of experiments demonstrate the effectiveness of the proposed method, which allows the filled brushstrokes to appear as realistic as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
量子星尘发布了新的文献求助10
18秒前
郗妫完成签到,获得积分10
48秒前
52秒前
jiaqiao发布了新的文献求助10
58秒前
1分钟前
爆米花应助安静海露采纳,获得10
1分钟前
1分钟前
1分钟前
moika发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
安静海露发布了新的文献求助10
1分钟前
如意竺完成签到,获得积分0
1分钟前
哈哈哈完成签到 ,获得积分10
2分钟前
2分钟前
红火完成签到 ,获得积分10
2分钟前
三三完成签到,获得积分10
2分钟前
三心草完成签到 ,获得积分10
2分钟前
斯文的访烟完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科目三应助moika采纳,获得10
4分钟前
444发布了新的文献求助10
5分钟前
打打应助安静海露采纳,获得10
5分钟前
科研通AI6应助444采纳,获得10
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
安静海露发布了新的文献求助10
5分钟前
李健应助好人采纳,获得10
5分钟前
安静海露完成签到,获得积分10
5分钟前
444完成签到,获得积分20
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772968
求助须知:如何正确求助?哪些是违规求助? 5604636
关于积分的说明 15430227
捐赠科研通 4905689
什么是DOI,文献DOI怎么找? 2639648
邀请新用户注册赠送积分活动 1587551
关于科研通互助平台的介绍 1542496