Art Image Inpainting with Style-guided Dual-branch Inpainting Network

修补 计算机科学 人工智能 对偶(语法数字) 计算机视觉 图像(数学) 风格(视觉艺术) 艺术 视觉艺术 文学类
作者
Quan Wang,Zichi Wang,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8026-8037 被引量:2
标识
DOI:10.1109/tmm.2024.3374963
摘要

Traditionally, art images have to be restored by professionals for a very long time. It is also possible to maintain the artistic value of damaged art images by digitizing them and restoring them through computer-aided means. However, existing advanced image inpainting methods are mainly intended for natural images and are not suitable for art images. Thus, we propose a novel style-guided dual-branch inpainting network (SDI-Net) to address the above-mentioned issue. Specifically, our SDI-Net consists of a style reconstruction (SR) branch and a style inpainting (SI) branch, in which the SR branch provides intermediate supervision (style and content supervision) for the SI branch. The SI branch performs art image inpainting with a coarse-to-fine approach. At the coarse inpainting stage, the content and style of art image are separated and preliminarily inpainted under the supervision of SI branch. In addition, we propose a class style learning (CSL) module to inpaint the style feature guided by the style label, which can provide more effective brushstrokes from the same class of art images. The coarse inpainted results can be obtained by fusing the inpainted style feature with the inpainted content feature. At the fine inpainting stage, a style attention (SA) module is proposed in the decoder to further refine the coarse inpainted results. We employ the style loss, the content loss, the multi-class style adversarial loss, and the reconstruction loss to jointly train the proposed SDI-Net. A variety of experiments demonstrate the effectiveness of the proposed method, which allows the filled brushstrokes to appear as realistic as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
南风发布了新的文献求助10
1秒前
1秒前
wqx发布了新的文献求助20
1秒前
深情安青应助王小冉采纳,获得30
1秒前
2秒前
loong应助赖沛采纳,获得30
2秒前
3秒前
3秒前
椿上春树发布了新的文献求助10
3秒前
Ava应助156548采纳,获得20
3秒前
3秒前
4秒前
4秒前
朱荧荧完成签到,获得积分10
5秒前
6秒前
余咋完成签到,获得积分20
6秒前
6秒前
6秒前
魏某某完成签到,获得积分10
6秒前
Yoh1220完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
Ava应助州府十三采纳,获得10
8秒前
俞兴达发布了新的文献求助10
8秒前
8秒前
wjx发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
李长安完成签到,获得积分10
9秒前
机灵书雪发布了新的文献求助10
9秒前
angelinazh完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
mahaha发布了新的文献求助10
11秒前
overcome发布了新的文献求助10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113903
求助须知:如何正确求助?哪些是违规求助? 4321280
关于积分的说明 13464996
捐赠科研通 4152777
什么是DOI,文献DOI怎么找? 2275420
邀请新用户注册赠送积分活动 1277450
关于科研通互助平台的介绍 1215482