亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Art Image Inpainting with Style-guided Dual-branch Inpainting Network

修补 计算机科学 人工智能 对偶(语法数字) 计算机视觉 图像(数学) 风格(视觉艺术) 艺术 视觉艺术 文学类
作者
Quan Wang,Zichi Wang,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8026-8037 被引量:2
标识
DOI:10.1109/tmm.2024.3374963
摘要

Traditionally, art images have to be restored by professionals for a very long time. It is also possible to maintain the artistic value of damaged art images by digitizing them and restoring them through computer-aided means. However, existing advanced image inpainting methods are mainly intended for natural images and are not suitable for art images. Thus, we propose a novel style-guided dual-branch inpainting network (SDI-Net) to address the above-mentioned issue. Specifically, our SDI-Net consists of a style reconstruction (SR) branch and a style inpainting (SI) branch, in which the SR branch provides intermediate supervision (style and content supervision) for the SI branch. The SI branch performs art image inpainting with a coarse-to-fine approach. At the coarse inpainting stage, the content and style of art image are separated and preliminarily inpainted under the supervision of SI branch. In addition, we propose a class style learning (CSL) module to inpaint the style feature guided by the style label, which can provide more effective brushstrokes from the same class of art images. The coarse inpainted results can be obtained by fusing the inpainted style feature with the inpainted content feature. At the fine inpainting stage, a style attention (SA) module is proposed in the decoder to further refine the coarse inpainted results. We employ the style loss, the content loss, the multi-class style adversarial loss, and the reconstruction loss to jointly train the proposed SDI-Net. A variety of experiments demonstrate the effectiveness of the proposed method, which allows the filled brushstrokes to appear as realistic as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
33完成签到,获得积分0
2秒前
小蘑菇应助Maximoff采纳,获得10
2秒前
zbblp1发布了新的文献求助10
5秒前
宋晓蓝完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
Bonnie发布了新的文献求助10
8秒前
Hayat发布了新的文献求助200
18秒前
万能图书馆应助百里幻竹采纳,获得10
26秒前
41秒前
百里幻竹发布了新的文献求助10
46秒前
百里幻竹发布了新的文献求助10
57秒前
1分钟前
Hello应助百里幻竹采纳,获得30
1分钟前
Hello应助啦啦啦采纳,获得10
1分钟前
SCT发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Maximoff发布了新的文献求助10
1分钟前
王饱饱完成签到 ,获得积分10
1分钟前
百里幻竹发布了新的文献求助30
1分钟前
勤劳的冰菱完成签到,获得积分10
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
爆米花应助百里幻竹采纳,获得10
1分钟前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
百里幻竹发布了新的文献求助10
2分钟前
优雅夕阳完成签到 ,获得积分10
3分钟前
sssnesstudy完成签到 ,获得积分10
3分钟前
生姜批发刘哥完成签到 ,获得积分10
3分钟前
Hayat发布了新的文献求助10
3分钟前
归尘发布了新的文献求助10
3分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
归尘发布了新的文献求助10
4分钟前
Jasper应助自信迎天采纳,获得10
4分钟前
Ephemeral完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054374
关于积分的说明 9041848
捐赠科研通 2743741
什么是DOI,文献DOI怎么找? 1505182
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864