Predictive model for epileptogenic tubers from all tubers in patients with tuberous sclerosis complex based on 18F-FDG PET: an 8-year single-centre study

医学 接收机工作特性 列线图 结节性硬化 癫痫外科 逻辑回归 癫痫 线性判别分析 放射科 核医学 人工智能 内科学 计算机科学 精神科
作者
Zhongke Wang,Yang Li,Zeng He,Shujing Li,Kaixuan Huang,Xianjun Shi,Xiaoqin Sun,Ruotong Ruan,Chun Cui,Ruodan Wang,Wang Li,Shengqing Lv,Shouxin Zhang,Zhonghong Liu,Hui Yang,Xiaolin Yang,Shiyong Liu
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:4
标识
DOI:10.1186/s12916-023-03121-0
摘要

Abstract Background More than half of patients with tuberous sclerosis complex (TSC) suffer from drug-resistant epilepsy (DRE), and resection surgery is the most effective way to control intractable epilepsy. Precise preoperative localization of epileptogenic tubers among all cortical tubers determines the surgical outcomes and patient prognosis. Models for preoperatively predicting epileptogenic tubers using 18 F-FDG PET images are still lacking, however. We developed noninvasive predictive models for clinicians to predict the epileptogenic tubers and the outcome (seizure freedom or no seizure freedom) of cortical tubers based on 18 F-FDG PET images. Methods Forty-three consecutive TSC patients with DRE were enrolled, and 235 cortical tubers were selected as the training set. Quantitative indices of cortical tubers on 18 F-FDG PET were extracted, and logistic regression analysis was performed to select those with the most important predictive capacity. Machine learning models, including logistic regression (LR), linear discriminant analysis (LDA), and artificial neural network (ANN) models, were established based on the selected predictive indices to identify epileptogenic tubers from multiple cortical tubers. A discriminating nomogram was constructed and found to be clinically practical according to decision curve analysis (DCA) and clinical impact curve (CIC). Furthermore, testing sets were created based on new PET images of 32 tubers from 7 patients, and follow-up outcome data from the cortical tubers were collected 1, 3, and 5 years after the operation to verify the reliability of the predictive model. The predictive performance was determined by using receiver operating characteristic (ROC) analysis. Results PET quantitative indices including SUVmean, SUVmax, volume, total lesion glycolysis (TLG), third quartile, upper adjacent and standard added metabolism activity (SAM) were associated with the epileptogenic tubers. The SUVmean, SUVmax, volume and TLG values were different between epileptogenic and non-epileptogenic tubers and were associated with the clinical characteristics of epileptogenic tubers. The LR model achieved the better performance in predicting epileptogenic tubers (AUC = 0.7706; 95% CI 0.70–0.83) than the LDA (AUC = 0.7506; 95% CI 0.68–0.82) and ANN models (AUC = 0.7425; 95% CI 0.67–0.82) and also demonstrated good calibration (Hosmer‒Lemeshow goodness-of-fit p value = 0.7). In addition, DCA and CIC confirmed the clinical utility of the nomogram constructed to predict epileptogenic tubers based on quantitative indices. Intriguingly, the LR model exhibited good performance in predicting epileptogenic tubers in the testing set (AUC = 0.8502; 95% CI 0.71–0.99) and the long-term outcomes of cortical tubers (1-year outcomes: AUC = 0.7805, 95% CI 0.71–0.85; 3-year outcomes: AUC = 0.8066, 95% CI 0.74–0.87; 5-year outcomes: AUC = 0.8172, 95% CI 0.75–0.87). Conclusions The 18 F-FDG PET image-based LR model can be used to noninvasively identify epileptogenic tubers and predict the long-term outcomes of cortical tubers in TSC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dandelion0330发布了新的文献求助10
1秒前
香蕉冬云发布了新的文献求助10
1秒前
2秒前
不要晚安的寒流完成签到,获得积分10
3秒前
mmol发布了新的文献求助10
3秒前
研友_VZG7GZ应助66采纳,获得10
4秒前
4秒前
5秒前
Apple发布了新的文献求助10
5秒前
lyp完成签到 ,获得积分10
6秒前
寒暄完成签到,获得积分10
6秒前
7秒前
墨小杭完成签到,获得积分10
7秒前
酷酷初之完成签到,获得积分10
7秒前
吱吱草莓派完成签到 ,获得积分10
8秒前
9秒前
晨曦发布了新的文献求助10
9秒前
张文涛发布了新的文献求助10
9秒前
秦小旋儿应助呆瓜采纳,获得10
9秒前
11发布了新的文献求助10
11秒前
萧水白应助彩色的霆采纳,获得10
11秒前
笑尽往事发布了新的文献求助10
12秒前
13秒前
14秒前
领导范儿应助ashley采纳,获得10
14秒前
15秒前
米儿完成签到,获得积分10
17秒前
米饭辣椒完成签到,获得积分10
17秒前
姜姜发布了新的文献求助10
17秒前
18秒前
Wenhao Zhao发布了新的文献求助10
19秒前
酷酷初之关注了科研通微信公众号
19秒前
20秒前
20秒前
nice1334发布了新的文献求助10
21秒前
hhhh完成签到,获得积分10
22秒前
wanci应助自信夜春采纳,获得20
23秒前
wangxl2023发布了新的文献求助10
23秒前
Mikey发布了新的文献求助10
23秒前
dandelion0330完成签到,获得积分10
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542