Research on CBF-YOLO detection model for common soybean pests in complex environment

环境科学 人工智能 计算机科学
作者
Linqi Zhu,Xiaoming Li,Hongmin Sun,Yingpeng Han
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108515-108515 被引量:16
标识
DOI:10.1016/j.compag.2023.108515
摘要

The intensive cultivation of large soybean fields, combined with environmental factors such as light and shadow, challenges the accuracy of traditional manual and machine learning algorithms in identifying insect pests in these fields. In this study, a CBF-YOLO network was proposed for detecting common soybean pests in complex environments. The network was composed primarily of the CSE-ELAN, Bi-PAN, and FFE modules. The CSE-ELAN module enhanced feature extraction in both spatial and channel dimensions by incorporating the CSE feature enhancement structure into the ELAN structure of YOLOv7. The Bi-PAN module fused the features of three different scaled feature layers to provide more accurate pest detection features and localization information. The FFE module consisted of spatial and channel feature purification modules that refined the multi-scale fused features from Bi-PAN, further improving the expression ability of the fused features. Experimental results showed that the mAP of CBF-YOLO network reached 86.9% for detecting common soybean pests, with average precisions for detecting Caterpillar and Diabrotica speciosa pest-damaged leaves reaching 86.5% and 87.3%, respectively. Compared to the original model, the mAP of the CBF-YOLO network for detecting common soybean pests increased by 6.3%, significantly improving the model's detection performance. The CBF-YOLO network exhibited the highest mAP of 81.6% and performed well in detecting common soybean pests in actual complex environments, compared to deep learning networks like YOLOv5. This network provides a technical basis for detecting common soybean pests in challenging environments. The data and code used in this study can be accessed at https://github.com/2peacock/CBF-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放尔丝发布了新的文献求助10
刚刚
刚刚
cj完成签到,获得积分10
刚刚
1秒前
3秒前
缪忆寒发布了新的文献求助10
4秒前
5秒前
搜集达人应助Lili采纳,获得10
6秒前
Jasper应助夏日重现采纳,获得10
6秒前
略略完成签到,获得积分10
7秒前
8秒前
香蕉觅云应助啦某某采纳,获得10
11秒前
12秒前
here完成签到 ,获得积分10
14秒前
enndyou完成签到,获得积分10
15秒前
kevin驳回了HZW应助
16秒前
科研通AI2S应助鲤鱼冰海采纳,获得10
16秒前
Hello应助稳重的秋天采纳,获得10
17秒前
18秒前
18秒前
毛毛酱发布了新的文献求助10
18秒前
李健应助lll采纳,获得10
21秒前
夏日重现发布了新的文献求助10
25秒前
不配.应助maozhehai29999采纳,获得40
25秒前
zhu97应助Helium采纳,获得20
27秒前
假面绅士发布了新的文献求助10
27秒前
tisansmar完成签到,获得积分10
27秒前
nn发布了新的文献求助10
28秒前
京苏完成签到,获得积分10
32秒前
学术辣鸡完成签到,获得积分10
32秒前
wangayting完成签到,获得积分10
34秒前
111完成签到,获得积分10
36秒前
Hello应助123采纳,获得10
36秒前
薰硝壤应助nn采纳,获得100
38秒前
yoyo发布了新的文献求助10
39秒前
39秒前
JamesPei应助学术辣鸡采纳,获得10
39秒前
NexusExplorer应助七七采纳,获得10
43秒前
祝我论文产出完成签到 ,获得积分10
43秒前
44秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141332
求助须知:如何正确求助?哪些是违规求助? 2792381
关于积分的说明 7802238
捐赠科研通 2448574
什么是DOI,文献DOI怎么找? 1302618
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237