Finding Subgraphs with Maximum Total Density and Limited Overlap in Weighted Hypergraphs

组合数学 数学
作者
Oana Balalau,Francesco Bonchi,T.-H. Hubert Chan,Francesco Gullo,Mauro Sozio,Hao Xie
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (4): 1-21
标识
DOI:10.1145/3639410
摘要

Finding dense subgraphs in large (hyper)graphs is a key primitive in a variety of real-world application domains, encompassing social network analytics, event detection, biology, and finance. In most such applications, one typically aims at finding several (possibly overlapping) dense subgraphs, which might correspond to communities in social networks or interesting events. While a large amount of work is devoted to finding a single densest subgraph, perhaps surprisingly, the problem of finding several dense subgraphs in weighted hypergraphs with limited overlap has not been studied in a principled way, to the best of our knowledge. In this work, we define and study a natural generalization of the densest subgraph problem in weighted hypergraphs, where the main goal is to find at most k subgraphs with maximum total aggregate density, while satisfying an upper bound on the pairwise weighted Jaccard coefficient, i.e., the ratio of weights of intersection divided by weights of union on two nodes sets of the subgraphs. After showing that such a problem is NP-Hard, we devise an efficient algorithm that comes with provable guarantees in some cases of interest, as well as, an efficient practical heuristic. Our extensive evaluation on large real-world hypergraphs confirms the efficiency and effectiveness of our algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
仍歌杨柳春风完成签到,获得积分10
1秒前
1秒前
Tourist应助云海采纳,获得30
1秒前
无言完成签到,获得积分10
2秒前
sd3km完成签到,获得积分10
2秒前
2秒前
三日完成签到,获得积分20
2秒前
小火苗发布了新的文献求助10
2秒前
李健的粉丝团团长应助YeMa采纳,获得10
2秒前
wzg666发布了新的文献求助10
2秒前
saixiaqiulai发布了新的文献求助10
3秒前
冰激凌发布了新的文献求助10
3秒前
3秒前
3秒前
sarah完成签到,获得积分10
4秒前
科目三应助yangbo采纳,获得10
6秒前
6秒前
congjia发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
abb先生发布了新的文献求助30
6秒前
斯文败类应助11采纳,获得10
6秒前
Li完成签到,获得积分10
6秒前
Owen应助白开水采纳,获得10
7秒前
7秒前
8秒前
9秒前
欢喜的天空完成签到,获得积分20
9秒前
一一应助大方的电灯胆采纳,获得10
9秒前
单一发布了新的文献求助10
9秒前
honda完成签到,获得积分10
9秒前
congjia完成签到,获得积分10
10秒前
1122完成签到,获得积分10
10秒前
chemstation发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
丘比特应助钟D摆采纳,获得10
11秒前
在水一方应助natuer采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577