Finding Subgraphs with Maximum Total Density and Limited Overlap in Weighted Hypergraphs

组合数学 数学
作者
Oana Balalau,Francesco Bonchi,T.-H. Hubert Chan,Francesco Gullo,Mauro Sozio,Hao Xie
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (4): 1-21
标识
DOI:10.1145/3639410
摘要

Finding dense subgraphs in large (hyper)graphs is a key primitive in a variety of real-world application domains, encompassing social network analytics, event detection, biology, and finance. In most such applications, one typically aims at finding several (possibly overlapping) dense subgraphs, which might correspond to communities in social networks or interesting events. While a large amount of work is devoted to finding a single densest subgraph, perhaps surprisingly, the problem of finding several dense subgraphs in weighted hypergraphs with limited overlap has not been studied in a principled way, to the best of our knowledge. In this work, we define and study a natural generalization of the densest subgraph problem in weighted hypergraphs, where the main goal is to find at most k subgraphs with maximum total aggregate density, while satisfying an upper bound on the pairwise weighted Jaccard coefficient, i.e., the ratio of weights of intersection divided by weights of union on two nodes sets of the subgraphs. After showing that such a problem is NP-Hard, we devise an efficient algorithm that comes with provable guarantees in some cases of interest, as well as, an efficient practical heuristic. Our extensive evaluation on large real-world hypergraphs confirms the efficiency and effectiveness of our algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
禾+发布了新的文献求助10
1秒前
小白完成签到,获得积分20
2秒前
刘JX完成签到,获得积分10
2秒前
geold发布了新的文献求助10
4秒前
传奇3应助Mm采纳,获得10
4秒前
bkagyin应助帕尼尼采纳,获得10
5秒前
研友_VZG7GZ应助圣斗士采纳,获得10
5秒前
D1fficulty完成签到,获得积分0
5秒前
欢欢完成签到,获得积分10
5秒前
5秒前
DDDD发布了新的文献求助10
5秒前
申申发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
6秒前
Cassie发布了新的文献求助30
7秒前
7秒前
QY发布了新的文献求助20
7秒前
务实老虎完成签到,获得积分10
8秒前
Orange应助刘JX采纳,获得10
10秒前
10秒前
小白菜完成签到,获得积分10
10秒前
时玖发布了新的文献求助10
12秒前
surui完成签到 ,获得积分10
12秒前
14秒前
jjzzSherri完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
领导范儿应助QY采纳,获得10
17秒前
17秒前
18秒前
Yikepp完成签到,获得积分10
19秒前
21秒前
21秒前
22秒前
fish发布了新的文献求助10
22秒前
潇洒的浩然完成签到,获得积分10
22秒前
jimeng发布了新的文献求助10
22秒前
噼里啪啦冲冲子完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342