A Lightweight Group Transformer-Based Time Series Reduction Network for Edge Intelligence and Its Application in Industrial RUL Prediction

变压器 计算 计算机科学 人工智能 边缘设备 深度学习 还原(数学) 机器学习 数据挖掘 算法 工程类 数学 电气工程 操作系统 云计算 几何学 电压
作者
Lei Ren,Haiteng Wang,Tingyu Mo,Laurence T. Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tnnls.2023.3347227
摘要

Recently, deep learning-based models such as transformer have achieved significant performance for industrial remaining useful life (RUL) prediction due to their strong representation ability. In many industrial practices, RUL prediction algorithms are deployed on edge devices for real-time response. However, the high computational cost of deep learning models makes it difficult to meet the requirements of edge intelligence. In this article, a lightweight group transformer with multihierarchy time-series reduction (GT-MRNet) is proposed to alleviate this problem. Different from most existing RUL methods computing all time series, GT-MRNet can adaptively select necessary time steps to compute the RUL. First, a lightweight group transformer is constructed to extract features by employing group linear transformation with significantly fewer parameters. Then, a time-series reduction strategy is proposed to adaptively filter out unimportant time steps at each layer. Finally, a multihierarchy learning mechanism is developed to further stabilize the performance of time-series reduction. Extensive experimental results on the real-world condition datasets demonstrate that the proposed method can significantly reduce up to 74.7% parameters and 91.8% computation cost without sacrificing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乖乖发布了新的文献求助10
刚刚
生动路人应助水加冰糖采纳,获得10
刚刚
李健的粉丝团团长应助yang采纳,获得10
2秒前
难过千易发布了新的文献求助10
3秒前
wanci应助喜悦的元柏采纳,获得10
3秒前
翟大有完成签到 ,获得积分0
4秒前
DDD完成签到,获得积分10
8秒前
bkagyin应助柒柒球采纳,获得10
8秒前
爆米花应助难过千易采纳,获得10
9秒前
Lesile发布了新的文献求助10
11秒前
小猪完成签到,获得积分10
13秒前
缥缈的寻琴应助甜甜友容采纳,获得10
13秒前
充电宝应助刘老哥6采纳,获得10
14秒前
14秒前
007发布了新的文献求助10
16秒前
17秒前
MchemG应助xzy998采纳,获得20
17秒前
你吼完成签到,获得积分10
20秒前
CipherSage应助Steven采纳,获得10
20秒前
今后应助彪行天下采纳,获得10
21秒前
搜集达人应助彪行天下采纳,获得10
21秒前
Hello应助彪行天下采纳,获得10
21秒前
顾矜应助彪行天下采纳,获得10
21秒前
yang发布了新的文献求助10
21秒前
陶醉大侠完成签到,获得积分10
21秒前
悲凉的秋荷完成签到,获得积分10
21秒前
22秒前
丹丹完成签到 ,获得积分10
22秒前
Liufgui应助深情傲柔采纳,获得10
26秒前
草莓夹心小饼干完成签到,获得积分10
26秒前
刘老哥6发布了新的文献求助10
28秒前
30秒前
深情安青应助美丽萝莉采纳,获得10
34秒前
华仔应助Steven采纳,获得10
35秒前
轻松元柏完成签到,获得积分10
36秒前
领导范儿应助专注小刺猬采纳,获得10
36秒前
科目三应助思维隋采纳,获得10
37秒前
Jasper应助冷傲老九采纳,获得10
37秒前
zihanwang应助HUIZHEV5采纳,获得10
38秒前
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075