A Lightweight Group Transformer-Based Time Series Reduction Network for Edge Intelligence and Its Application in Industrial RUL Prediction

变压器 计算 计算机科学 人工智能 边缘设备 深度学习 还原(数学) 机器学习 数据挖掘 算法 工程类 数学 云计算 几何学 电压 电气工程 操作系统
作者
Lei Ren,Haiteng Wang,Tingyu Mo,Laurence T. Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tnnls.2023.3347227
摘要

Recently, deep learning-based models such as transformer have achieved significant performance for industrial remaining useful life (RUL) prediction due to their strong representation ability. In many industrial practices, RUL prediction algorithms are deployed on edge devices for real-time response. However, the high computational cost of deep learning models makes it difficult to meet the requirements of edge intelligence. In this article, a lightweight group transformer with multihierarchy time-series reduction (GT-MRNet) is proposed to alleviate this problem. Different from most existing RUL methods computing all time series, GT-MRNet can adaptively select necessary time steps to compute the RUL. First, a lightweight group transformer is constructed to extract features by employing group linear transformation with significantly fewer parameters. Then, a time-series reduction strategy is proposed to adaptively filter out unimportant time steps at each layer. Finally, a multihierarchy learning mechanism is developed to further stabilize the performance of time-series reduction. Extensive experimental results on the real-world condition datasets demonstrate that the proposed method can significantly reduce up to 74.7% parameters and 91.8% computation cost without sacrificing accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助胡聪明采纳,获得10
1秒前
Pepsi完成签到,获得积分10
6秒前
巴拉巴拉完成签到,获得积分10
6秒前
查理九世完成签到,获得积分10
13秒前
13秒前
活力小笼包完成签到,获得积分10
14秒前
蠢宝贝完成签到,获得积分10
14秒前
研友_VZG7GZ应助jonathan采纳,获得10
14秒前
15秒前
isak发布了新的文献求助10
15秒前
混沌完成签到,获得积分10
17秒前
脑洞疼应助杠赛来采纳,获得10
17秒前
步步完成签到 ,获得积分10
18秒前
slj完成签到,获得积分10
18秒前
Evan完成签到,获得积分10
19秒前
singyu9完成签到,获得积分10
20秒前
Jammy发布了新的文献求助30
21秒前
21秒前
24秒前
SciGPT应助123456采纳,获得10
25秒前
Akim应助michael采纳,获得10
25秒前
Maria完成签到,获得积分10
26秒前
鸡鱼蚝发布了新的文献求助10
26秒前
Timelapse应助isak采纳,获得10
27秒前
29秒前
杠赛来发布了新的文献求助10
29秒前
烟花应助鸡鱼蚝采纳,获得10
30秒前
阿纯完成签到,获得积分10
31秒前
勤恳雅莉应助科研通管家采纳,获得10
33秒前
勤恳雅莉应助科研通管家采纳,获得10
33秒前
冷艳馒头发布了新的文献求助80
33秒前
心想事成应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
33秒前
所所应助科研通管家采纳,获得10
33秒前
35秒前
温婉的从阳给温婉的从阳的求助进行了留言
38秒前
寇博翔发布了新的文献求助10
38秒前
Peng丶Young完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565710
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692596
捐赠科研通 4592710
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492116
关于科研通互助平台的介绍 1463316