亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective pedestrian tracking method based on YOLOv8 and improved DeepSORT

计算机科学 人工智能 卡尔曼滤波器 特征提取 车辆跟踪系统 模式识别(心理学) 计算机视觉 数据挖掘
作者
Wenshun Sheng,Jian Shen,Qiming Huang,Zhixuan Liu,Zegang Ding
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:21 (2): 1791-1805
标识
DOI:10.3934/mbe.2024077
摘要

<abstract><p>A multi-objective pedestrian tracking method based on you only look once-v8 (YOLOv8) and the improved simple online and real time tracking with a deep association metric (DeepSORT) was proposed with the purpose of coping with the issues of local occlusion and ID dynamic transformation that frequently arise when tracking target pedestrians in real complex traffic scenarios. To begin with, in order to enhance the feature extraction network's capacity to learn target feature information in busy traffic situations, the detector implemented the YOLOv8 method with a high level of small-scale feature expression. In addition, the omni-scale network (OSNet) feature extraction network was then put on top of DeepSORT in order to accomplish real-time synchronized target tracking. This increases the effectiveness of picture edge recognition by dynamically fusing the collected feature information at various scales. Furthermore, a new adaptive forgetting smoothing Kalman filtering algorithm (FSA) was created to adapt to the nonlinear condition of the pedestrian trajectory in the traffic scene in order to address the issue of poor prediction attributed to the linear state equation of Kalman filtering once more. Afterward, the original intersection over union (IOU) association matching algorithm of DeepSORT was replaced by the complete-intersection over union (CIOU) association matching algorithm to fundamentally reduce the target pedestrians' omission and misdetection situation and to improve the accuracy of data matching. Eventually, the generalized trajectory feature extractor model (GFModel) was developed to tightly merge the local and global information through the average pooling operation in order to get precise tracking results and further decrease the impact of numerous disturbances on target tracking. The fusion algorithm of YOLOv8 and improved DeepSORT method based on OSNet, FSA and GFModel was named YOFGD. According to the experimental findings, YOFGD's ultimate accuracy can reach 77.9% and its speed can reach 55.8 frames per second (FPS), which is more than enough to fulfill the demands of real-world scenarios.</p></abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
心随以动完成签到 ,获得积分10
12秒前
Gigi发布了新的文献求助10
13秒前
14秒前
16秒前
冷艳的立果应助Gigi采纳,获得10
20秒前
修辛完成签到 ,获得积分10
20秒前
45秒前
47秒前
51秒前
圆滚滚的栗子君完成签到 ,获得积分10
56秒前
bkagyin应助ling采纳,获得10
1分钟前
善良的冷梅完成签到,获得积分10
1分钟前
1分钟前
马騳骉完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zhaozi发布了新的文献求助10
1分钟前
zhaozi完成签到,获得积分10
2分钟前
雾蓝完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Gzb发布了新的文献求助10
2分钟前
情怀应助Gzb采纳,获得10
2分钟前
xyawl425完成签到,获得积分10
3分钟前
3分钟前
yoona发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
xinxin发布了新的文献求助10
3分钟前
大个应助xinxin采纳,获得10
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298