Deep Reinforcement Learning based Energy Management for Heavy Duty HEV considering Discrete-Continuous Hybrid Action Space

重型的 动作(物理) 强化学习 空格(标点符号) 职责 能源管理 计算机科学 人工智能 能量(信号处理) 数学 汽车工程 工程类 物理 政治学 法学 统计 量子力学 操作系统
作者
Zemin Eitan Liu,Yanfei Li,Quan Zhou,Yong Li,Bin Shuai,Hongming Xu,Min Hua,Guikun Tan,Lubing Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tte.2024.3363650
摘要

To reduce the fuel consumption of heavy duty logistic vehicles (HDLVs), P2 parallel hybridization is a promising solution, and deep reinforcement learning (DRL) is a promising method to optimize energy management strategies (EMSs). However, the complicated discrete-continuous hybrid action space lying in the P2 system presents a challenge to achieve real-time optimal control. Thus, this paper proposes a novel DRL algorithm combining auto-tune soft actor-critic (ATSAC) with ordinal regression to optimize the engine torque output and gear shifting simultaneously. ATSAC can adjust the update frequency and learning rate of SAC automatically to improve the generalization and ordinal regression can convert discrete variables into samplings in continuous space to handle the hybrid action. Moreover, a multi-dimensional scenario-oriented driving cycle (SODC) is established through naturalistic driving big data (NDBD) as the training cycle to further improve the EMS generalization. By comprehensive comparison with the widely used twin-delayed deep deterministic policy gradient (TD3) based EMSs, ATSAC achieves significant improvement with 53.70% higher computational efficiency and 12.31% lower negative total reward (NTR) in the training process. Application analysis in unseen real-world driving scenarios shows that only ATSAC based EMS can obtain real-time optimal control in the testing process. Furthermore, the EMS trained through SODC obtains 81.73% lower NTR than the standard China World Transient Vehicle Cycle (CWTVC) which demonstrates that SODC can represent the real-world driving scenarios much more accurately than CWTVC, especially in low-speed high-load conditions which are crucial for HDLVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助李紫硕采纳,获得10
刚刚
lagertha发布了新的文献求助10
3秒前
jf完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
友好旭尧完成签到,获得积分10
7秒前
不咸完成签到,获得积分10
7秒前
9秒前
瀼瀼完成签到,获得积分10
10秒前
12秒前
13秒前
Lucas应助logitech采纳,获得10
14秒前
15秒前
QQ发布了新的文献求助10
16秒前
沉静的乘风完成签到,获得积分10
16秒前
17秒前
17秒前
20秒前
20秒前
ED应助科研通管家采纳,获得30
21秒前
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
FanFan应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
lagertha完成签到,获得积分10
22秒前
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
22秒前
SUIRIGO发布了新的文献求助10
23秒前
yeye完成签到,获得积分10
24秒前
logitech发布了新的文献求助10
25秒前
26秒前
Chelry发布了新的文献求助10
29秒前
王sir完成签到,获得积分10
30秒前
logitech完成签到,获得积分20
31秒前
行走的土豆完成签到,获得积分10
31秒前
李紫硕发布了新的文献求助10
33秒前
猪猪hero应助高大草莓采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547