Deep Reinforcement Learning based Energy Management for Heavy Duty HEV considering Discrete-Continuous Hybrid Action Space

重型的 动作(物理) 强化学习 空格(标点符号) 职责 能源管理 计算机科学 人工智能 能量(信号处理) 数学 汽车工程 工程类 物理 政治学 法学 统计 量子力学 操作系统
作者
Zemin Eitan Liu,Yanfei Li,Quan Zhou,Yong Li,Bin Shuai,Hongming Xu,Min Hua,Guikun Tan,Lubing Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tte.2024.3363650
摘要

To reduce the fuel consumption of heavy duty logistic vehicles (HDLVs), P2 parallel hybridization is a promising solution, and deep reinforcement learning (DRL) is a promising method to optimize energy management strategies (EMSs). However, the complicated discrete-continuous hybrid action space lying in the P2 system presents a challenge to achieve real-time optimal control. Thus, this paper proposes a novel DRL algorithm combining auto-tune soft actor-critic (ATSAC) with ordinal regression to optimize the engine torque output and gear shifting simultaneously. ATSAC can adjust the update frequency and learning rate of SAC automatically to improve the generalization and ordinal regression can convert discrete variables into samplings in continuous space to handle the hybrid action. Moreover, a multi-dimensional scenario-oriented driving cycle (SODC) is established through naturalistic driving big data (NDBD) as the training cycle to further improve the EMS generalization. By comprehensive comparison with the widely used twin-delayed deep deterministic policy gradient (TD3) based EMSs, ATSAC achieves significant improvement with 53.70% higher computational efficiency and 12.31% lower negative total reward (NTR) in the training process. Application analysis in unseen real-world driving scenarios shows that only ATSAC based EMS can obtain real-time optimal control in the testing process. Furthermore, the EMS trained through SODC obtains 81.73% lower NTR than the standard China World Transient Vehicle Cycle (CWTVC) which demonstrates that SODC can represent the real-world driving scenarios much more accurately than CWTVC, especially in low-speed high-load conditions which are crucial for HDLVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
青木蓝发布了新的文献求助10
2秒前
852应助gaga采纳,获得10
2秒前
3秒前
3秒前
游尘发布了新的文献求助10
4秒前
bkagyin应助zhaowenxian采纳,获得10
4秒前
水电费第三方完成签到,获得积分20
5秒前
斯文败类应助lalala采纳,获得10
5秒前
小王爱看文献完成签到,获得积分10
6秒前
李明完成签到,获得积分10
6秒前
酷波er应助Khr1stINK采纳,获得10
7秒前
cora发布了新的文献求助10
7秒前
shelly0621发布了新的文献求助10
7秒前
中华有为发布了新的文献求助10
7秒前
特兰克斯发布了新的文献求助10
7秒前
Ares完成签到,获得积分10
8秒前
8秒前
在水一方应助garyaa采纳,获得10
8秒前
DAN_完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助屹舟采纳,获得10
9秒前
科研通AI5应助一一采纳,获得10
10秒前
隐形的紫菜完成签到,获得积分10
10秒前
23132发布了新的文献求助10
11秒前
cora完成签到,获得积分10
12秒前
放眼天下完成签到 ,获得积分10
13秒前
文毛完成签到,获得积分10
13秒前
13秒前
14秒前
兴奋的问旋完成签到,获得积分10
14秒前
张张完成签到,获得积分10
14秒前
陈文学完成签到,获得积分10
15秒前
一一发布了新的文献求助10
15秒前
bkagyin应助潇洒的冷玉采纳,获得10
16秒前
通~发布了新的文献求助10
16秒前
16秒前
芒果完成签到,获得积分10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794