Deep Reinforcement Learning based Energy Management for Heavy Duty HEV considering Discrete-Continuous Hybrid Action Space

重型的 动作(物理) 强化学习 空格(标点符号) 职责 能源管理 计算机科学 人工智能 能量(信号处理) 数学 汽车工程 工程类 物理 政治学 法学 统计 量子力学 操作系统
作者
Zemin Eitan Liu,Yanfei Li,Quan Zhou,Yong Li,Bin Shuai,Hongming Xu,Min Hua,Guikun Tan,Lubing Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tte.2024.3363650
摘要

To reduce the fuel consumption of heavy duty logistic vehicles (HDLVs), P2 parallel hybridization is a promising solution, and deep reinforcement learning (DRL) is a promising method to optimize energy management strategies (EMSs). However, the complicated discrete-continuous hybrid action space lying in the P2 system presents a challenge to achieve real-time optimal control. Thus, this paper proposes a novel DRL algorithm combining auto-tune soft actor-critic (ATSAC) with ordinal regression to optimize the engine torque output and gear shifting simultaneously. ATSAC can adjust the update frequency and learning rate of SAC automatically to improve the generalization and ordinal regression can convert discrete variables into samplings in continuous space to handle the hybrid action. Moreover, a multi-dimensional scenario-oriented driving cycle (SODC) is established through naturalistic driving big data (NDBD) as the training cycle to further improve the EMS generalization. By comprehensive comparison with the widely used twin-delayed deep deterministic policy gradient (TD3) based EMSs, ATSAC achieves significant improvement with 53.70% higher computational efficiency and 12.31% lower negative total reward (NTR) in the training process. Application analysis in unseen real-world driving scenarios shows that only ATSAC based EMS can obtain real-time optimal control in the testing process. Furthermore, the EMS trained through SODC obtains 81.73% lower NTR than the standard China World Transient Vehicle Cycle (CWTVC) which demonstrates that SODC can represent the real-world driving scenarios much more accurately than CWTVC, especially in low-speed high-load conditions which are crucial for HDLVs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭露露发布了新的文献求助10
刚刚
科目三应助yiyi采纳,获得10
1秒前
1秒前
馨怡关注了科研通微信公众号
1秒前
1秒前
老lili发布了新的文献求助10
1秒前
星辰大海应助风雨采纳,获得10
2秒前
lc完成签到,获得积分20
2秒前
AAA工位主理人完成签到,获得积分10
2秒前
keroro发布了新的文献求助10
2秒前
淡然惜雪发布了新的文献求助10
2秒前
阿能完成签到,获得积分20
3秒前
3秒前
kndfsfmf完成签到,获得积分10
3秒前
123456678完成签到,获得积分10
4秒前
momo应助曾无忧采纳,获得10
4秒前
追寻清完成签到,获得积分10
4秒前
4秒前
Lin应助怡然思萱采纳,获得10
4秒前
扬子发布了新的文献求助30
5秒前
summer完成签到,获得积分10
5秒前
5秒前
天涯完成签到,获得积分10
5秒前
研友_IEEE快到碗里来完成签到,获得积分10
5秒前
灯座发布了新的文献求助10
5秒前
面面完成签到,获得积分10
5秒前
5秒前
CAIWEN完成签到,获得积分10
6秒前
6秒前
CJZOU完成签到,获得积分10
6秒前
orixero应助小太阳采纳,获得10
7秒前
7秒前
Jonathan完成签到,获得积分10
7秒前
dddd完成签到,获得积分10
7秒前
hsn完成签到,获得积分10
7秒前
sansronds完成签到,获得积分10
8秒前
Lze发布了新的文献求助20
8秒前
天涯发布了新的文献求助10
9秒前
奋斗的苹果完成签到,获得积分10
9秒前
大花花完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017