析氧
过电位
电负性
化学
离子键合
催化作用
电子转移
无机化学
价(化学)
溶解
分解水
光化学
离子
电化学
物理化学
电极
有机化学
光催化
作者
Jiayan Wu,Zhongjie Qiu,Jiaxi Zhang,Huiyu Song,Zhiming Cui,Li Du
出处
期刊:Molecules
[MDPI AG]
日期:2024-02-08
卷期号:29 (4): 785-785
标识
DOI:10.3390/molecules29040785
摘要
Proton exchange membrane water electrolysis is hindered by the sluggish kinetics of the anodic oxygen evolution reaction. RuO2 is regarded as a promising alternative to IrO2 for the anode catalyst of proton exchange membrane water electrolyzers due to its superior activity and relatively lower cost compared to IrO2. However, the dissolution of Ru induced by its overoxidation under acidic oxygen evolution reaction (OER) conditions greatly hinders its durability. Herein, we developed a strategy for stabilizing RuO2 in acidic OER by the incorporation of high-valence metals with suitable ionic electronegativity. A molten salt method was employed to synthesize a series of high-valence metal-substituted RuO2 with large specific surface areas. The experimental results revealed that a high content of surface Ru4+ species promoted the OER intrinsic activity of high-valence doped RuO2. It was found that there was a linear relationship between the ratio of surface Ru4+/Ru3+ species and the ionic electronegativity of the dopant metals. By regulating the ratio of surface Ru4+/Ru3+ species, incorporating Re, with the highest ionic electronegativity, endowed Re0.1Ru0.9O2 with exceptional OER activity, exhibiting a low overpotential of 199 mV to reach 10 mA cm−2. More importantly, Re0.1Ru0.9O2 demonstrated outstanding stability at both 10 mA cm−2 (over 300 h) and 100 mA cm−2 (over 25 h). The characterization of post-stability Re0.1Ru0.9O2 revealed that Re promoted electron transfer to Ru, serving as an electron reservoir to mitigate excessive oxidation of Ru sites during the OER process and thus enhancing OER stability. We conclude that Re, with the highest ionic electronegativity, attracted a mass of electrons from Ru in the pre-catalyst and replenished electrons to Ru under the operating potential. This work spotlights an effective strategy for stabilizing cost-effective Ru-based catalysts for acidic OER.
科研通智能强力驱动
Strongly Powered by AbleSci AI