Green fluorescent proteins: Examining the underlying factors of brightness using machine learning

荧光 亮度 绿色荧光蛋白 生物物理学 化学 计算机科学 人工智能 生物 物理 生物化学 天文 光学 基因
作者
Lillian G. Kidd,John N. Koberstein,Srinivas C. Turaga,Alison G. Tebo
出处
期刊:Biophysical Journal [Elsevier BV]
卷期号:123 (3): 279a-279a
标识
DOI:10.1016/j.bpj.2023.11.1743
摘要

Green fluorescent protein (GFP), originally discovered in the jellyfish Aequorea victoria, is a protein that emits green fluorescence when its internal fluorophore absorbs blue light. GFPs have high utility in scientific research as fluorescent markers that are used to visualize biological processes, structures, and interactions. Engineering of fluorescent proteins (FPs) generated color variants through mutation of the wild-type sequence that subsequently shifted excitation wavelength. However, it is poorly understood how sequence mutations influence fluorescence at 405 nm versus 488 nm, which represent the two predominant excitation peaks of GFP and related proteins. To elucidate how sequence mutations shape the GFP fluorescence spectra, we developed a novel hybrid neural network model that combines a black-box deep network with a biochemical model of fluorescence, including parameters for protein folding, quantum yield, and fluorophore pKa to predict fluorescence intensity from the amino acid sequence. We trained the model on a published dataset consisting of paired sequence-function measurements for thousands of FP variants which critically included excitation at both 405 and 488 nm. The model accurately predicted fluorescence measurements at each excitation wavelength from sequence alone. The interpretability of the model parameters allows for inference and assessment of the biochemical factors underlying shifts in excitation wavelength. Further improvements can be made by extending the model to also fit in vitro measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助梓榆采纳,获得10
刚刚
Lucas应助浮浮世世采纳,获得10
2秒前
baobao发布了新的文献求助10
2秒前
2秒前
carpybala发布了新的文献求助10
3秒前
球球发布了新的文献求助10
3秒前
丘比特应助ZHANGMANLI0422采纳,获得10
3秒前
小郑完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
WTT完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Emma完成签到,获得积分10
5秒前
Hh完成签到,获得积分10
6秒前
梧桐树完成签到,获得积分10
6秒前
典雅的思菱完成签到,获得积分10
6秒前
6秒前
成就的沛菡完成签到 ,获得积分10
6秒前
ysf完成签到,获得积分10
6秒前
doubleshake发布了新的文献求助10
6秒前
鱿鱼完成签到,获得积分10
7秒前
7秒前
KingWong发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
卢卢完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
weiteman完成签到,获得积分10
9秒前
宸5931发布了新的文献求助10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646