Genotype‐Guided Model for Prediction of Tacrolimus Initial Dosing After Lung Transplantation

他克莫司 加药 医学 CYP3A5 接收机工作特性 肝移植 人口 肺移植 钙调神经磷酸酶 置信区间 内科学 移植 药理学 基因型 生物 基因 生物化学 环境卫生
作者
Wenwen Du,Xiaoxing Wang,Dan Zhang,Xianbo Zuo
出处
期刊:The Journal of Clinical Pharmacology [Wiley]
标识
DOI:10.1002/jcph.2411
摘要

Abstract The determination of the appropriate initial dose for tacrolimus is crucial in achieving the target concentration promptly and avoiding adverse effects and poor prognosis. However, the trial‐and‐error approach is still common practice. This study aimed to establish a prediction model for an initial dosing algorithm of tacrolimus in patients receiving a lung transplant. A total of 210 lung transplant recipients were enrolled, and 26 single nucleotide polymorphisms (SNP) from 18 genes that could potentially affect tacrolimus pharmacokinetics were genotyped. Associations between SNPs and tacrolimus concentration/dose ratio were analyzed. SNPs that remained significant in pharmacogenomic analysis were further combined with clinical factors to construct a prediction model for tacrolimus initial dose. The dose needed to reach steady state tacrolimus concentrations and achieve the target range was used to validate model prediction efficiency. Our final model consisted of 7 predictors— CYP3A5 rs776746, SLCO1B3 rs4149117, SLC2A2 rs1499821, NFATc4 rs1955915, alanine aminotransferase, direct bilirubin, and hematocrit—and explained 41.4% variance in the tacrolimus concentration/dose ratio. It achieved an area under the receiver operating characteristic curve of 0.804 (95% confidence interval, 0.746‐0.861). The Hosmer‐Lemeshow test yielded a nonsignificant P value of .790, suggesting good fit of the model. The predicted dose exhibited good correlation with the observed dose in the early postoperative period (r = 0.748, P less than .001). Our study provided a genotype‐guided prediction model for tacrolimus initial dose, which may help to guide individualized dosing of tacrolimus in the lung transplant population in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可爱的函函应助娜行采纳,获得10
刚刚
鱼圆杂铺完成签到 ,获得积分10
刚刚
Danielle完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
呆呆发布了新的文献求助10
1秒前
只只完成签到,获得积分20
1秒前
WNL发布了新的文献求助10
2秒前
彭珊完成签到,获得积分10
2秒前
Rocky发布了新的文献求助10
2秒前
Charon922完成签到,获得积分10
2秒前
2秒前
酒尚温发布了新的文献求助50
2秒前
2秒前
科目三应助黑米粥采纳,获得10
3秒前
共享精神应助AnasYusuf采纳,获得10
3秒前
3秒前
嘟嘟金子完成签到,获得积分10
3秒前
wyh发布了新的文献求助10
3秒前
好了发布了新的文献求助10
3秒前
善良的远锋完成签到,获得积分10
3秒前
愉快的冰珍完成签到 ,获得积分20
4秒前
个木完成签到,获得积分20
4秒前
一平发布了新的文献求助10
5秒前
5秒前
乐观期待发布了新的文献求助30
5秒前
小蘑菇应助Ricardo采纳,获得10
5秒前
抓恐龙发布了新的文献求助10
5秒前
6秒前
123完成签到,获得积分20
6秒前
7秒前
合适的半青应助靓丽涵易采纳,获得10
7秒前
xuan完成签到,获得积分10
7秒前
7秒前
zhl完成签到,获得积分10
8秒前
大模型应助轻松的雨旋采纳,获得10
8秒前
zhu完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672