亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aluminum Surface Defect Detection Algorithm Based on Improved YOLOv5

计算机科学 棱锥(几何) 卷积(计算机科学) 算法 联营 比例(比率) 信号(编程语言) 人工智能 频道(广播) 领域(数学) 模式识别(心理学) 数学 人工神经网络 计算机网络 物理 几何学 量子力学 纯数学 程序设计语言
作者
Jianan Liang,Ruiling Kong,Rong Ma,Jinhua Zhang,Xingrui Bian
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:7 (2) 被引量:3
标识
DOI:10.1002/adts.202300695
摘要

Abstract Industrial defect detection is an important aspect of object detection. Aluminum is an indispensable material in the industrial field, but the complexity of surface defects on aluminum makes detection challenging. Therefore, the paper proposes the YOLOv5‐ESP algorithm based on the YOLOv5 algorithm. First, the problem of poor signal quality and small data samples is addressed through data enhancement. Second, the YOLOv5‐ESP incorporates the Efficient Channel Attention‐C3 (ECA‐C3) module in the Backbone structure to enhance attention toward defect regions. The Spatial Pooling Pyramid Cross‐Stage Partial Convolution (SPPCSPC) module is introduced to extract multi‐scale features of defects. The Poly‐scale Convolution (PSConv) is applied at the end of the Neck structure to resolve the problem of imprecise localization resulting from significant differences in the scale of defect features. Soft Non‐Maximum Suppression (Soft‐NMS) is utilized in the Head structure to optimize the prediction boxes. Experimental results show that the proposed YOLOv5‐ESP achieves a mean Average Precision (mAP) value of 94%, outperforming YOLOv5 and other classical algorithms. Furthermore, it maintains an average recognition time of 0.019 s per image, which meets the requirements of accuracy and real‐time performance in the industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张杰列夫完成签到 ,获得积分10
15秒前
JamesPei应助科研通管家采纳,获得10
20秒前
馆长应助科研通管家采纳,获得20
20秒前
馆长应助科研通管家采纳,获得10
20秒前
馆长应助科研通管家采纳,获得10
20秒前
花落无声完成签到 ,获得积分10
52秒前
1分钟前
Lily完成签到,获得积分10
1分钟前
1分钟前
Lily发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Jim完成签到,获得积分10
1分钟前
2分钟前
Shuo应助科研通管家采纳,获得20
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
lzxbarry应助科研通管家采纳,获得50
2分钟前
lzxbarry应助科研通管家采纳,获得50
2分钟前
2分钟前
Hodlumm完成签到,获得积分10
2分钟前
LArry完成签到,获得积分10
2分钟前
Orange应助TXZ06采纳,获得10
2分钟前
英姑应助zwang688采纳,获得10
3分钟前
星辰大海应助TXZ06采纳,获得10
3分钟前
思源应助mervin采纳,获得10
3分钟前
3分钟前
3分钟前
TXZ06发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
zwang688发布了新的文献求助10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
4分钟前
mervin发布了新的文献求助10
4分钟前
5分钟前
5分钟前
DannyNickolov发布了新的文献求助10
5分钟前
5分钟前
曲夜白完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596033
求助须知:如何正确求助?哪些是违规求助? 4008156
关于积分的说明 12408892
捐赠科研通 3687052
什么是DOI,文献DOI怎么找? 2032177
邀请新用户注册赠送积分活动 1065413
科研通“疑难数据库(出版商)”最低求助积分说明 950750