mtADENet: A novel interpretable method integrating multiple types of network-based inference approaches for prediction of adverse drug events

计算机科学 推论 鉴定(生物学) 数据挖掘 机器学习 人工智能 药物发现 药品 生物信息学 医学 药理学 生物 植物
作者
Zhuohang Yu,Zengrui Wu,Moran Zhou,Long Chen,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107831-107831 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107831
摘要

Identification of adverse drug events (ADEs) is crucial to reduce human health risks and accelerate drug safety assessment. ADEs are mainly caused by unintended interactions with primary or additional targets (off-targets). In this study, we proposed a novel interpretable method named mtADENet, which integrates multiple types of network-based inference approaches for ADE prediction. Different from phenotype-based methods, mtADENet introduced computational target profiles predicted by network-based methods to bridge the gap between chemical structures and ADEs, and hence can not only predict ADEs for drugs and novel compounds within or outside the drug-ADE association network, but also provide insights for the elucidation of molecular mechanisms of the ADEs caused by drugs. We constructed a series of network-based prediction models for 23 ADE categories. These models achieved high AUC values ranging from 0.865 to 0.942 in 10-fold cross validation. The best model further showed high performance on four external validation sets, which outperformed two previous network-based methods. To show the practical value of mtADENet, we performed case studies on developmental neurotoxicity and cardio-oncology, and over 50 % of predicted ADEs and targets for drugs and novel compounds were validated by literature. Moreover, mtADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer/). In summary, mtADENet would be a powerful tool for ADE prediction and drug safety assessment in drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自觉的凛发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
乐观秋柔发布了新的文献求助10
4秒前
不敢装睡发布了新的文献求助10
5秒前
zhangmengru发布了新的文献求助30
5秒前
春夏秋冬发布了新的文献求助10
6秒前
思源应助刘爽采纳,获得10
6秒前
7秒前
LSS发布了新的文献求助10
7秒前
xu发布了新的文献求助10
9秒前
小蘑菇应助123采纳,获得10
9秒前
wdlc完成签到,获得积分10
10秒前
苻涵菡完成签到,获得积分10
10秒前
lizzzzzz发布了新的文献求助10
10秒前
jiaozhiping发布了新的文献求助10
11秒前
11秒前
李志远完成签到,获得积分10
11秒前
zho关闭了zho文献求助
13秒前
蓝蓝的腿毛完成签到 ,获得积分10
14秒前
syk发布了新的文献求助30
14秒前
Orange应助自觉的凛采纳,获得10
15秒前
zg发布了新的文献求助10
15秒前
韦觅松完成签到,获得积分10
16秒前
xiaohan,JIA完成签到,获得积分10
16秒前
粉粉完成签到,获得积分20
17秒前
louxiaohan完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
Lucas应助徐徐采纳,获得10
18秒前
zhangmengru完成签到,获得积分10
19秒前
19秒前
绿麦盲区完成签到 ,获得积分10
20秒前
20秒前
充电宝应助不敢装睡采纳,获得10
21秒前
bjbmtxy应助曾经的思山采纳,获得20
21秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951