mtADENet: A novel interpretable method integrating multiple types of network-based inference approaches for prediction of adverse drug events

计算机科学 推论 鉴定(生物学) 数据挖掘 机器学习 人工智能 药物发现 药品 生物信息学 医学 药理学 生物 植物
作者
Zhuohang Yu,Zengrui Wu,Moran Zhou,Long Chen,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107831-107831 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107831
摘要

Identification of adverse drug events (ADEs) is crucial to reduce human health risks and accelerate drug safety assessment. ADEs are mainly caused by unintended interactions with primary or additional targets (off-targets). In this study, we proposed a novel interpretable method named mtADENet, which integrates multiple types of network-based inference approaches for ADE prediction. Different from phenotype-based methods, mtADENet introduced computational target profiles predicted by network-based methods to bridge the gap between chemical structures and ADEs, and hence can not only predict ADEs for drugs and novel compounds within or outside the drug-ADE association network, but also provide insights for the elucidation of molecular mechanisms of the ADEs caused by drugs. We constructed a series of network-based prediction models for 23 ADE categories. These models achieved high AUC values ranging from 0.865 to 0.942 in 10-fold cross validation. The best model further showed high performance on four external validation sets, which outperformed two previous network-based methods. To show the practical value of mtADENet, we performed case studies on developmental neurotoxicity and cardio-oncology, and over 50 % of predicted ADEs and targets for drugs and novel compounds were validated by literature. Moreover, mtADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer/). In summary, mtADENet would be a powerful tool for ADE prediction and drug safety assessment in drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Bobby完成签到,获得积分10
2秒前
感性的安露完成签到,获得积分10
2秒前
犹豫小海豚完成签到,获得积分10
3秒前
英姑应助殷勤的紫槐采纳,获得10
3秒前
哞哞完成签到,获得积分10
4秒前
芷烟完成签到 ,获得积分10
4秒前
zhuchenglu完成签到,获得积分10
4秒前
深情安青应助azai采纳,获得10
5秒前
天天快乐应助azai采纳,获得10
5秒前
Hello应助azai采纳,获得10
5秒前
汉堡包应助azai采纳,获得10
5秒前
qin希望应助azai采纳,获得10
5秒前
qin希望应助azai采纳,获得10
5秒前
缓慢如南应助azai采纳,获得10
5秒前
qin希望应助azai采纳,获得10
5秒前
qin希望应助azai采纳,获得10
5秒前
科研通AI5应助azai采纳,获得10
5秒前
解师完成签到,获得积分20
5秒前
lxt完成签到,获得积分10
6秒前
ysm完成签到,获得积分10
6秒前
大个应助Stellar777采纳,获得10
7秒前
xukaixuan001完成签到,获得积分10
7秒前
小李完成签到,获得积分10
8秒前
cmyohh完成签到 ,获得积分10
9秒前
雾见春完成签到 ,获得积分10
9秒前
沉默的香氛完成签到 ,获得积分10
9秒前
9秒前
勤奋花瓣完成签到,获得积分10
10秒前
Yara.H完成签到 ,获得积分10
11秒前
mumufan完成签到,获得积分10
12秒前
12秒前
12秒前
sheep完成签到,获得积分10
13秒前
李爱国应助开心采纳,获得10
13秒前
WangSir完成签到,获得积分10
13秒前
13秒前
雪白胡萝卜完成签到,获得积分10
14秒前
思源应助zhangshaoqi采纳,获得10
15秒前
默默的皮牙子应助小玉米采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890