Physically Driven Self-Supervised Learning and its Applications in Geophysical Inversion

反演(地质) 地球物理学 计算机科学 人工智能 地质学 遥感 地震学 构造学
作者
Yang Yang,Zhuo Wang,Naihao Liu,Jingyu Wang,Shanmin Pang,Rongchang Liu,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:4
标识
DOI:10.1109/tgrs.2024.3368016
摘要

Sparse coding (SC) has been proven effective in various geological tasks, such as seismic time-frequency (TF) analysis and seismic reflection inversion. Nevertheless, it inevitably has several drawbacks, e.g., low computational efficiency and difficulty in parameter selection. Recently, self-supervised learning (SSL) has emerged as a promising alternative to mitigate these issues, offering high computational effectiveness and requiring fewer labels. We suggest a generalized physically driven workflow for geophysical inversion based on SSL and SC, named the physically driven SSL network (PDSSLNet). This generalized PDSSLNet model comprises two main modules. One is the inverse model, generated by convolutional neural networks (CNNs), which can benefit from their high computational effectiveness and strong nonlinear fitting ability. The other one is the forward model based on the SC theory, ensuring the physical meaning of the geophysical applications with high accuracy. Afterward, we provide two typical geological inversion cases to demonstrate the validity and effectiveness of the suggested PDSSLNet, including sparse TF analysis and seismic reflectivity inversion. Three-dimensional (3D) field data volume applications confirm that the proposed inversion workflow may efficiently circumvent the drawbacks of the conventional SC-based approach while maintaining excellent computing efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reflux应助JACK采纳,获得10
1秒前
木木 12完成签到,获得积分10
1秒前
as关闭了as文献求助
1秒前
明理元菱发布了新的文献求助20
1秒前
1秒前
马家辉完成签到,获得积分10
2秒前
AY完成签到,获得积分20
2秒前
Sherlock发布了新的文献求助10
3秒前
3秒前
Yue完成签到,获得积分10
3秒前
拼搏的忆寒完成签到,获得积分10
4秒前
CarryZ8完成签到,获得积分10
4秒前
在水一方应助时而采纳,获得10
4秒前
5秒前
Jasper应助义气的三德采纳,获得10
5秒前
5秒前
桃子发布了新的文献求助10
5秒前
5秒前
山水木发布了新的文献求助10
6秒前
6秒前
小白发布了新的文献求助10
6秒前
xyy完成签到,获得积分10
6秒前
大爱仙尊发布了新的文献求助10
7秒前
樊伟诚完成签到,获得积分10
7秒前
CUGjy发布了新的文献求助10
8秒前
完美梨愁发布了新的文献求助10
8秒前
9秒前
Sherlock完成签到,获得积分10
10秒前
10秒前
10秒前
小蘑菇应助sangyujie采纳,获得10
10秒前
科研通AI5应助Amin采纳,获得10
11秒前
11秒前
快乐阿星闪闪完成签到,获得积分10
11秒前
12秒前
科研通AI5应助于玕采纳,获得10
12秒前
nozero应助冬青采纳,获得30
13秒前
高冷的呆呆鱼完成签到,获得积分20
13秒前
始于一完成签到,获得积分10
13秒前
田様应助nishishui采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246