Normative modelling of brain morphometry across the lifespan with CentileBrain: algorithm benchmarking and model optimisation

协变量 规范性 标杆管理 多元统计 神经影像学 稳健性(进化) 算法 计算机科学 人工智能 机器学习 统计 数学 计量经济学 心理学 生物 哲学 生物化学 认识论 营销 精神科 业务 基因
作者
Ruiyang Ge,Yuetong Yu,Yi Xuan Qi,Yunan Vera Fan,Shiyu Chen,Chuntong Gao,Shalaila S. Haas,Faye New,Marcus Dörr,Henry Brodaty,Rachel M. Brouwer,Randy L. Buckner,Xavier Caseras,Fabrice Crivello,Eveline A Crone,Susanne Erk,Simon E. Fisher,Barbara Franke,David C Glahn,Udo Dannlowski
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (3): e211-e221 被引量:55
标识
DOI:10.1016/s2589-7500(23)00250-9
摘要

The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ZexiWu发布了新的文献求助20
刚刚
玖念发布了新的文献求助10
1秒前
想毕业发布了新的文献求助40
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
kingwill应助科研通管家采纳,获得20
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
糖异生完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得30
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
lanananan发布了新的文献求助10
2秒前
Wang完成签到,获得积分10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
ZJPPPP应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得30
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
合适板栗完成签到,获得积分20
2秒前
ZJPPPP应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科目三应助qwepirt采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
XiaoLiu应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
ZJPPPP应助科研通管家采纳,获得10
3秒前
研友_想想发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
wz完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646