亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised imbalanced multi-label classification with label propagation

多标签分类 人工智能 模式识别(心理学) 正规化(语言学) 计算机科学 利用 一致性(知识库) 相似性(几何) 监督学习 半监督学习 机器学习 数据挖掘 人工神经网络 计算机安全 图像(数学)
作者
Guodong Du,Jia Zhang,Ning Zhang,Hanrui Wu,Peiliang Wu,Shaozi Li
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110358-110358 被引量:33
标识
DOI:10.1016/j.patcog.2024.110358
摘要

Multi-label learning tasks usually encounter the problem of the class-imbalance, where samples and their corresponding labels are non-uniformly distributed over multi-label data space. It has attracted increasing attention during the past decade, however, there is a lack of methods capable of handling the imbalanced problem in a semi-supervised setting. This study proposes a label propagation technique to settle the semi-supervised imbalanced multi-label issue. Specially, we first utilize a collaborative manner to exploit the correlations from labels and instances, and learn a label regularization matrix to overcome the imbalanced problem in the labeled instance. After that, we extend to semi-supervised learning and explore to represent the similarity of instances with weighted graphs on labeled and unlabeled data. Then, the data distribution information and label correlations are fully utilized to design the loss function under the consistency assumption manner. At last, we present an iterative scheme to settle the optimization issue, thereby achieving label propagation to address the imbalanced challenge. Experiments on a variety of multi-label data sets show the favorable performance of the proposed method against related comparing approaches. Notably, the proposed method is also validated to be robust with a limited number of training instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助梅者如西采纳,获得10
4秒前
科研通AI6应助梅者如西采纳,获得10
4秒前
8秒前
8464368完成签到,获得积分10
9秒前
答辩完成签到 ,获得积分10
10秒前
17秒前
21秒前
25秒前
fml完成签到,获得积分10
29秒前
辣辣完成签到,获得积分10
31秒前
安详的面包完成签到,获得积分10
32秒前
34秒前
fml发布了新的文献求助10
35秒前
39秒前
梅者如西完成签到,获得积分10
47秒前
49秒前
江枫渔火完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
yexu发布了新的文献求助10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
大胆的伟宸完成签到,获得积分10
1分钟前
1分钟前
yexu完成签到,获得积分10
2分钟前
星辰大海应助大胆的伟宸采纳,获得10
2分钟前
qinghongmeng完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
虚心依白发布了新的文献求助10
2分钟前
平淡的翅膀完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650884
求助须知:如何正确求助?哪些是违规求助? 4781901
关于积分的说明 15052691
捐赠科研通 4809656
什么是DOI,文献DOI怎么找? 2572449
邀请新用户注册赠送积分活动 1528505
关于科研通互助平台的介绍 1487448