Examining the rationality of Giant Panda National Park's zoning designations and management measures for habitat conservation: Insights from interpretable machine learning methods

分区 国家公园 理性 栖息地 自然保护 地理 环境资源管理 栖息地保护 生态学 环境规划 工程类 考古 环境科学 政治学 生物 土木工程 法学
作者
Yuhan Xu,Jun Tang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:920: 170955-170955
标识
DOI:10.1016/j.scitotenv.2024.170955
摘要

Examining the rationality of zoning designations and management measures in the initial establishment of national parks in China is of great significance for supporting decision-making regarding habitat conservation. There exists a research gap in exploring the threshold effects of both environmental and human-related factors on habitat distribution in the context of national parks. However, it may be a challenge because of the limited species distribution data. Our study aims to put forward an analytical framework that integrates species distribution models (SDMs) with interpretable machine learning methods. A case study was performed in the Sichuan region of the Giant Panda National Park (GPNP). We constructed a SDM based on the Random Forest algorithm and made use of accessible remote sensing and big data to predict the distribution of giant panda habitat (GPH) in 2020. Interpretable machine learning methods, namely Partial dependence plots (PDPs) and SHapley Additive exPlanations (SHAP), were utilized to uncover the underlying mechanisms of environmental and anthropogenic variables influencing the GPH distribution. Through GIS overlay analysis, areas where conflicts between human settlements, transportation infrastructure, and GPH exist were identified. Our findings indicated a potential 28.44 % decrease in GPH from 2014 to 2020. Environmental factors such as temperature, topography, and vegetation type, as well as anthropogenic factors including distance to built-up areas and transportation infrastructure, notably distance to national roads, provincial roads and city arterial roads, influenced the GPH distribution with threshold effects significantly. The overlay analysis revealed escalated conflicts between human settlements, transportation infrastructure, and GPH in 2020 compared to 2014. Currently, the Sichuan region of the GPNP implements two zones: a core protection zone and a general control zone, covering 63.71 % of the GPH, while 36.29 % remains outside the management scope. Drawing from the analysis above, this study provided suggestions for the adjustment of zoning designations and management measures in the GPNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助加速度采纳,获得30
2秒前
3秒前
4秒前
4秒前
chongse完成签到,获得积分10
5秒前
东方秦兰完成签到,获得积分10
6秒前
小二郎应助普通人采纳,获得10
6秒前
wanci应助哆啦猫采纳,获得10
7秒前
9秒前
东方秦兰发布了新的文献求助10
9秒前
狂野忆文完成签到,获得积分10
10秒前
11秒前
再找一篇就好哈完成签到,获得积分10
13秒前
orange完成签到,获得积分10
13秒前
最重中之重完成签到,获得积分10
14秒前
呆萌的u发布了新的文献求助20
15秒前
小鲸发布了新的文献求助10
15秒前
淡然可仁发布了新的文献求助10
16秒前
淡淡的如松完成签到 ,获得积分10
16秒前
17秒前
18秒前
可爱的函函应助BareBear采纳,获得10
20秒前
xttt完成签到,获得积分20
20秒前
21秒前
显眼的mm发布了新的文献求助200
22秒前
111发布了新的文献求助10
23秒前
烟花应助lavendaer采纳,获得10
24秒前
豆子应助小宝爸爸采纳,获得10
24秒前
天天快乐应助秋秋采纳,获得10
25秒前
26秒前
lmm发布了新的文献求助20
26秒前
hua完成签到,获得积分10
26秒前
Curry完成签到,获得积分10
28秒前
隐形曼青应助sherry221采纳,获得10
28秒前
猩猩星完成签到,获得积分10
29秒前
深情安青应助ken采纳,获得10
29秒前
30秒前
32秒前
Li应助小鲸采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825