Lightweight Context Awareness and Feature Enhancement for Anchor-Free Remote- Sensing Target Detection

计算机科学 稳健性(进化) 目标检测 特征(语言学) 背景(考古学) 遥感 特征提取 人工智能 计算机视觉 数据挖掘 模式识别(心理学) 古生物学 语言学 哲学 地质学 生物化学 化学 生物 基因
作者
Fei Fan,Ming Zhang,Dahua Yu,Jianjun Li,Shichuang Zhou,Yang Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (7): 10714-10726 被引量:1
标识
DOI:10.1109/jsen.2024.3362982
摘要

Optical remote sensing image target detection holds significant research significance in various domains, including disaster relief, ecological environment protection, and military surveillance. However, since remote sensing images have multi-scale targets, complex backgrounds and many small targets, the performance of the existing network models in remote sensing image target detection cannot reach what we expect. In addition, we note that current networks use complex computational mechanisms that make the models time-costly, which hinders its practicability in remote sensing target detection scenarios. In response to this challenge, we propose an anchor-free and efficient one-stage target detection method for optical remote sensing images. First, we propose the lightweight context-aware module GSelf-Attention, injected into the feature fusion network from top-to-bottom and bottom-to-top to enhance the feature information interaction. Secondly, we proposed ELAN-RSN uses an optimized residual shrinkage network (RSN) to eliminate background noise and conflicting information in the multi-scale feature fusion. Finally, we introduce the decoupled head fused with SPDConv to enhance the detection accuracy of small target objects further. The performance of the proposed algorithm is compared with that of other advanced methods on DIOR and RSOD datasets. The experimental results show that the proposed algorithm significantly improves object detection accuracy while ensuring detection efficiency and has high robustness. Code is available at https://github.com/FF-codeHouse/Object-Detection/tree/remote-sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的冬灵关注了科研通微信公众号
刚刚
刚刚
1秒前
1秒前
星辰大海应助宫_采纳,获得10
2秒前
吉星发布了新的文献求助10
4秒前
有爱便神经完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
在水一方应助壮观的擎采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
天真皓轩发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
英俊的铭应助重要衬衫采纳,获得10
6秒前
科研通AI2S应助犹豫的甜瓜采纳,获得10
9秒前
xuan完成签到,获得积分10
9秒前
老实的美女完成签到,获得积分10
11秒前
兜兜发布了新的文献求助10
11秒前
wynter完成签到,获得积分10
15秒前
16秒前
隐形曼青应助徐狗馨采纳,获得10
17秒前
17秒前
fancynancy应助duxh123采纳,获得20
18秒前
20秒前
20秒前
21秒前
Wang发布了新的文献求助10
21秒前
22秒前
小马甲应助wynter采纳,获得10
22秒前
领导范儿应助兜兜采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963