Lightweight Context Awareness and Feature Enhancement for Anchor-Free Remote- Sensing Target Detection

计算机科学 稳健性(进化) 目标检测 特征(语言学) 背景(考古学) 遥感 特征提取 人工智能 计算机视觉 数据挖掘 模式识别(心理学) 古生物学 语言学 哲学 地质学 生物化学 化学 生物 基因
作者
Fei Fan,Ming Zhang,Dahua Yu,Jianjun Li,Shichuang Zhou,Yang Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 10714-10726 被引量:1
标识
DOI:10.1109/jsen.2024.3362982
摘要

Optical remote sensing image target detection holds significant research significance in various domains, including disaster relief, ecological environment protection, and military surveillance. However, since remote sensing images have multi-scale targets, complex backgrounds and many small targets, the performance of the existing network models in remote sensing image target detection cannot reach what we expect. In addition, we note that current networks use complex computational mechanisms that make the models time-costly, which hinders its practicability in remote sensing target detection scenarios. In response to this challenge, we propose an anchor-free and efficient one-stage target detection method for optical remote sensing images. First, we propose the lightweight context-aware module GSelf-Attention, injected into the feature fusion network from top-to-bottom and bottom-to-top to enhance the feature information interaction. Secondly, we proposed ELAN-RSN uses an optimized residual shrinkage network (RSN) to eliminate background noise and conflicting information in the multi-scale feature fusion. Finally, we introduce the decoupled head fused with SPDConv to enhance the detection accuracy of small target objects further. The performance of the proposed algorithm is compared with that of other advanced methods on DIOR and RSOD datasets. The experimental results show that the proposed algorithm significantly improves object detection accuracy while ensuring detection efficiency and has high robustness. Code is available at https://github.com/FF-codeHouse/Object-Detection/tree/remote-sensing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
金戈发布了新的文献求助10
1秒前
1秒前
2秒前
琳琳发布了新的文献求助50
3秒前
啧啧啧完成签到,获得积分10
3秒前
科研通AI6应助瘦瘦的戒指采纳,获得30
3秒前
思源应助Yeeee采纳,获得10
4秒前
Hello应助Chen采纳,获得10
5秒前
谭柠倩发布了新的文献求助10
6秒前
xdwaev完成签到,获得积分20
6秒前
勤恳天问发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
8秒前
Hou完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
12秒前
Prince发布了新的文献求助10
12秒前
13秒前
深情安青应助Max采纳,获得10
14秒前
14秒前
谢焯州完成签到,获得积分10
14秒前
ERIS完成签到,获得积分10
15秒前
15秒前
hh完成签到,获得积分10
15秒前
打打应助搞怪凝云采纳,获得10
15秒前
盲点发布了新的文献求助10
16秒前
打打应助加减乘除采纳,获得10
16秒前
尊o发布了新的文献求助10
16秒前
16秒前
17秒前
ERIS发布了新的文献求助10
17秒前
18秒前
上官若男应助张小欠采纳,获得10
19秒前
19秒前
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715