亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight Context Awareness and Feature Enhancement for Anchor-Free Remote- Sensing Target Detection

计算机科学 稳健性(进化) 目标检测 特征(语言学) 背景(考古学) 遥感 特征提取 人工智能 计算机视觉 数据挖掘 模式识别(心理学) 古生物学 语言学 哲学 地质学 生物化学 化学 生物 基因
作者
Fei Fan,Ming Zhang,Dahua Yu,Jianjun Li,Shichuang Zhou,Yang Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 10714-10726 被引量:1
标识
DOI:10.1109/jsen.2024.3362982
摘要

Optical remote sensing image target detection holds significant research significance in various domains, including disaster relief, ecological environment protection, and military surveillance. However, since remote sensing images have multi-scale targets, complex backgrounds and many small targets, the performance of the existing network models in remote sensing image target detection cannot reach what we expect. In addition, we note that current networks use complex computational mechanisms that make the models time-costly, which hinders its practicability in remote sensing target detection scenarios. In response to this challenge, we propose an anchor-free and efficient one-stage target detection method for optical remote sensing images. First, we propose the lightweight context-aware module GSelf-Attention, injected into the feature fusion network from top-to-bottom and bottom-to-top to enhance the feature information interaction. Secondly, we proposed ELAN-RSN uses an optimized residual shrinkage network (RSN) to eliminate background noise and conflicting information in the multi-scale feature fusion. Finally, we introduce the decoupled head fused with SPDConv to enhance the detection accuracy of small target objects further. The performance of the proposed algorithm is compared with that of other advanced methods on DIOR and RSOD datasets. The experimental results show that the proposed algorithm significantly improves object detection accuracy while ensuring detection efficiency and has high robustness. Code is available at https://github.com/FF-codeHouse/Object-Detection/tree/remote-sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Marciu33采纳,获得10
9秒前
sam完成签到,获得积分10
18秒前
sam发布了新的文献求助30
32秒前
34秒前
Akim应助sam采纳,获得10
51秒前
bkagyin应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
51秒前
可靠的寒风完成签到,获得积分10
51秒前
Perry完成签到,获得积分10
1分钟前
2分钟前
传奇3应助ffffan采纳,获得10
2分钟前
小强完成签到 ,获得积分10
2分钟前
liqiqi完成签到,获得积分20
2分钟前
2分钟前
liqiqi发布了新的文献求助30
2分钟前
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
Marciu33完成签到,获得积分10
3分钟前
我是老大应助lele200218采纳,获得10
3分钟前
3分钟前
3分钟前
lele200218完成签到,获得积分10
3分钟前
lele200218发布了新的文献求助10
3分钟前
3分钟前
彭于晏应助燕鹏采纳,获得10
3分钟前
4分钟前
Yangqx007完成签到,获得积分10
4分钟前
矜天完成签到 ,获得积分10
4分钟前
4分钟前
Yoanna_UTHSC应助Yangqx007采纳,获得30
4分钟前
4分钟前
ffffan发布了新的文献求助10
4分钟前
adcc102完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335303
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614004
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447358
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974