亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight Context Awareness and Feature Enhancement for Anchor-Free Remote- Sensing Target Detection

计算机科学 稳健性(进化) 目标检测 特征(语言学) 背景(考古学) 遥感 特征提取 人工智能 计算机视觉 数据挖掘 模式识别(心理学) 古生物学 语言学 哲学 地质学 生物化学 化学 生物 基因
作者
Fei Fan,Ming Zhang,Dahua Yu,Jianjun Li,Shichuang Zhou,Yang Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 10714-10726 被引量:1
标识
DOI:10.1109/jsen.2024.3362982
摘要

Optical remote sensing image target detection holds significant research significance in various domains, including disaster relief, ecological environment protection, and military surveillance. However, since remote sensing images have multi-scale targets, complex backgrounds and many small targets, the performance of the existing network models in remote sensing image target detection cannot reach what we expect. In addition, we note that current networks use complex computational mechanisms that make the models time-costly, which hinders its practicability in remote sensing target detection scenarios. In response to this challenge, we propose an anchor-free and efficient one-stage target detection method for optical remote sensing images. First, we propose the lightweight context-aware module GSelf-Attention, injected into the feature fusion network from top-to-bottom and bottom-to-top to enhance the feature information interaction. Secondly, we proposed ELAN-RSN uses an optimized residual shrinkage network (RSN) to eliminate background noise and conflicting information in the multi-scale feature fusion. Finally, we introduce the decoupled head fused with SPDConv to enhance the detection accuracy of small target objects further. The performance of the proposed algorithm is compared with that of other advanced methods on DIOR and RSOD datasets. The experimental results show that the proposed algorithm significantly improves object detection accuracy while ensuring detection efficiency and has high robustness. Code is available at https://github.com/FF-codeHouse/Object-Detection/tree/remote-sensing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zjjcrystal发布了新的文献求助10
9秒前
11秒前
小蘑菇应助石榴汁的书采纳,获得10
11秒前
zjjcrystal完成签到,获得积分10
19秒前
28秒前
48秒前
53秒前
爱吃大米饭完成签到 ,获得积分10
53秒前
58秒前
赘婿应助保持科研热情采纳,获得10
1分钟前
舒服的觅夏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
彭于晏应助罗大壮采纳,获得10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
bfs完成签到 ,获得积分10
1分钟前
1分钟前
罗大壮发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
mark163完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
1分钟前
HANZHANG应助科研通管家采纳,获得10
1分钟前
21完成签到 ,获得积分10
2分钟前
Jasper应助找不完采纳,获得10
2分钟前
2分钟前
2分钟前
Criminology34应助ling30采纳,获得10
2分钟前
2分钟前
Freeasy完成签到 ,获得积分10
3分钟前
SciGPT应助krajicek采纳,获得10
3分钟前
x夏天完成签到 ,获得积分10
3分钟前
zoey完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786