Global Digital Compact: A Mechanism for the Governance of Online Discriminatory and Misleading Content Generation

机制(生物学) 公司治理 数字内容 内容(测量理论) 计算机科学 业务 数学 万维网 物理 数学分析 财务 量子力学
作者
Zhi Li,Wenyi Zhang,Hengtian Zhang,Ran Gao,Xingdong Fang
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-16 被引量:6
标识
DOI:10.1080/10447318.2024.2314350
摘要

With the continuous development of artificial intelligence (AI), algorithmic discrimination and discriminatory and misleading content (DMC) generated by AI have given rise to many negative effects in cyberspace, such as racial and gender discrimination, misinformation, and so on. The growing concern in society over AI governance urgently necessitates the establishment of an effective mechanism to supervise and govern AI-generated DMC. In this article, the discriminatory and misleading contents of AIGC (Artificial Intelligence Generated Content) were extracted according to Text Classification Model and then classified by Naive Bayesian algorithm. The results showed that under the Global Digital Compact (GDC), countries differed in their degrees of discrimination related to race, gender, religion, and age. The racial discrimination accounted for the highest proportion in the United States, with a score of 0.15; that in Britain and France took up a share of 0.06 and 0.07, respectively; and merely 0.03 in Germany. Discriminatory content of racial discrimination (M1) and gender discrimination (M2) in science and technology industry was relatively low, accounting for 0.05 and 0.08, respectively. Analyzing data within the Global Digital Compact (GDC) illuminates the disparities and trends in DMC generation across various countries, cities, industries, and individual users. This analysis provides valuable references for subsequent research and problem-solving initiatives under the compact. Furthermore, GDC plays a pivotal role in addressing issues related to AI-generated DMC, contributing significantly to the creation of a secure, reliable, and equitable cyberspace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助坚定筮采纳,获得10
1秒前
Wenpandaen应助wonhui采纳,获得10
2秒前
小马甲应助LEE采纳,获得10
4秒前
5秒前
fr0zen完成签到,获得积分10
10秒前
不知道叫啥完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
Robe完成签到,获得积分10
15秒前
elgar612发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
丘比特应助单薄的映之采纳,获得10
19秒前
事事顺利发布了新的文献求助10
19秒前
科研菜鸟完成签到,获得积分10
22秒前
23秒前
Crane发布了新的文献求助10
23秒前
Singularity举报壮观映波求助涉嫌违规
24秒前
坚定筮发布了新的文献求助10
24秒前
野原发布了新的文献求助10
24秒前
香蕉觅云应助byecslx采纳,获得10
25秒前
Xiaopu发布了新的文献求助10
25秒前
淀粉肠发布了新的文献求助10
26秒前
27秒前
Karst颜完成签到,获得积分10
29秒前
zhouleiwang发布了新的文献求助10
29秒前
孟德尔吃豌豆完成签到,获得积分10
30秒前
31秒前
五十年老西医完成签到,获得积分10
31秒前
洗剪吹发布了新的文献求助10
33秒前
小蘑菇应助发酱采纳,获得10
33秒前
34秒前
包容的海豚完成签到 ,获得积分10
35秒前
kim发布了新的文献求助10
36秒前
白头蝰发布了新的文献求助30
36秒前
研友_VZG7GZ应助huyang采纳,获得10
36秒前
慕青应助123采纳,获得10
37秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079