Flagellar pH homeostasis mediated by Na+/H+ exchangers regulates human sperm functions through coupling with CatSper and KSper activation

过度活跃 顶体反应 人口 精子 细胞生物学 精子活力 细胞内pH值 酪氨酸磷酸化 化学 生物 男科 细胞内 磷酸化 医学 环境卫生
作者
Minzu Liang,Nanxi Ji,Jian Song,Hang Kang,Xuhui Zeng
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:39 (4): 674-688 被引量:4
标识
DOI:10.1093/humrep/deae020
摘要

Abstract STUDY QUESTION Whether and how do Na+/H+ exchangers (NHEs) regulate the physiological functions of human sperm? SUMMARY ANSWER NHE-mediated flagellar intracellular pH (pHi) homeostasis facilitates the activation of the pH-sensitive, sperm-specific Ca2+ channel (CatSper) and the sperm-specific K+ channel (KSper), which subsequently modulate sperm motility, hyperactivation, flagellar tyrosine phosphorylation, and the progesterone (P4)-induced acrosome reaction. WHAT IS KNOWN ALREADY Sperm pHi alkalization is an essential prerequisite for the acquisition of sperm-fertilizing capacity. Different sperm functions are strictly controlled by particular pHi regulatory mechanisms. NHEs are suggested to modulate sperm H+ efflux. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used samples from >50 sperm donors over a period of 1 year. To evaluate NHE action on human sperm function, 5-(N,N-dimethyl)-amiloride (DMA), a highly selective inhibitor of NHEs, was utilized. All experiments were repeated at least five times using different individual sperm samples or cells. PARTICIPANTS/MATERIALS, SETTING, METHODS By utilizing the pH fluorescent indicator pHrodo Red-AM, we detected alterations in single-cell pHi value in human sperm. The currents of CatSper and KSper in human sperm were recorded by the whole-cell patch-clamp technique. Changes in population and single-cell Ca2+ concentrations ([Ca2+]i) of human sperm loaded with Fluo 4-AM were measured. Membrane potential (Vm) and population pHi were quantitatively examined by a multimode plate reader after sperm were loaded with 3,3′-dipropylthiadicarbocyanine iodide and 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester, respectively. Sperm motility parameters were assessed by a computer-assisted semen analysis system. Tyrosine phosphorylation was determined by immunofluorescence, and sperm acrosome reaction was evaluated by Pisum sativum agglutinin-FITC staining. MAIN RESULTS AND THE ROLE OF CHANCE DMA-induced NHEs inhibition severely acidified the human sperm flagellar pHi from 7.20 ± 0.04 to 6.38 ± 0.12 (mean ± SEM), while the effect of DMA on acrosomal pHi was less obvious (from 5.90 ± 0.13 to 5.57 ± 0.12, mean ± SEM). The whole-cell patch-clamp recordings revealed that NHE inhibition remarkably suppressed alkalization-induced activation of CatSper and KSper. As a consequence, impairment of [Ca2+]i homeostasis and Vm maintenance were detected in the presence of DMA. During the capacitation process, pre-treatment with DMA for 2 h potently decreased sperm pHi, which in turn decreased sperm motility and kinetic parameters. Sperm capacitation-associated functions, including hyperactivation, tyrosine phosphorylation, and P4-induced acrosome reaction, were also compromised by NHE inhibition. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study. Caution should be taken when extrapolating these results to in vivo applications. WIDER IMPLICATIONS OF THE FINDINGS This study revealed that NHEs are important physiological regulators for human CatSper and KSper, which are indispensable for human sperm fertility, suggesting that malfunction of NHEs could be an underlying mechanism for the pathogenesis of male infertility. FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (32271167 and 81871202 to X.Z.), Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC20211543 to X.Z.), the Social Development Project of Jiangsu Province (No. BE2022765 to X.Z.), the Society and livelihood Project of Nantong City (No. MS22022087 to X.Z.), and the Natural Science Foundation of Jiangsu Province (BK20220608 to H.K.). The authors have no competing interests to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu完成签到 ,获得积分10
1秒前
vffg完成签到,获得积分10
4秒前
彭于晏应助乐观鸣凤采纳,获得10
7秒前
Lisztan完成签到,获得积分10
7秒前
JIANGCHUNYAN完成签到 ,获得积分10
9秒前
Xu发布了新的文献求助10
22秒前
与离完成签到 ,获得积分10
26秒前
乐观鸣凤完成签到,获得积分10
26秒前
代扁扁完成签到 ,获得积分10
28秒前
ylyao完成签到 ,获得积分10
33秒前
jeffrey完成签到,获得积分10
38秒前
42秒前
星海种花完成签到 ,获得积分10
43秒前
安详的蜜粉完成签到,获得积分10
46秒前
胜胜糖完成签到 ,获得积分10
47秒前
股价发布了新的文献求助10
49秒前
牧尔芙发布了新的文献求助10
51秒前
汉堡包应助股价采纳,获得10
55秒前
55秒前
细腻千秋完成签到 ,获得积分10
55秒前
Lucas应助太阳花采纳,获得10
55秒前
李潇潇完成签到 ,获得积分10
55秒前
Lucas应助dzy1317采纳,获得10
1分钟前
灵巧安蕾发布了新的文献求助30
1分钟前
梅特卡夫完成签到,获得积分10
1分钟前
科研通AI2S应助limecho采纳,获得10
1分钟前
jf完成签到 ,获得积分10
1分钟前
ldzjiao完成签到 ,获得积分10
1分钟前
1分钟前
Hello应助小李子采纳,获得10
1分钟前
白鹭立雪完成签到,获得积分10
1分钟前
maria_takayama完成签到,获得积分10
1分钟前
dzy1317发布了新的文献求助10
1分钟前
邓娅琴完成签到 ,获得积分10
1分钟前
无私的含海完成签到,获得积分10
1分钟前
dzy1317完成签到,获得积分10
1分钟前
谦让的雅青完成签到 ,获得积分10
1分钟前
1分钟前
小二郎应助电池菜鸟采纳,获得10
1分钟前
韭菜完成签到,获得积分20
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511014
关于积分的说明 11155997
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255