Manifold Graph Signal Restoration Using Gradient Graph Laplacian Regularizer

数学 图形带宽 拉普拉斯矩阵 算法 平面图 邻接矩阵 谱图论 图形能量 图形 电压图 组合数学 折线图
作者
Fei Chen,Gene Cheung,Xue Zhang
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:72: 744-761 被引量:1
标识
DOI:10.1109/tsp.2023.3343560
摘要

In the graph signal processing (GSP) literature, graph Laplacian regularizer (GLR) was used for signal restoration to promote piecewise smooth / constant reconstruction with respect to an underlying graph. However, for signals slowly varying across graph kernels, GLR suffers from an undesirable “staircase” effect. In this paper, focusing on manifold graphs—collections of uniform discrete samples on low-dimensional continuous manifolds—we generalize GLR to gradient graph Laplacian regularizer (GGLR) that promotes planar / piecewise planar (PWP) signal reconstruction. Specifically, for a graph endowed with sampling coordinates (e.g., 2D images, 3D point clouds), we first define a gradient operator, using which we construct a gradient graph for nodes’ gradients in the sampling manifold space. This maps to a gradient-induced nodal graph (GNG) and a positive semi-definite (PSD) Laplacian matrix with planar signals as the 0 frequencies. For manifold graphs without explicit sampling coordinates, we propose a graph embedding method to obtain node coordinates via fast eigenvector computation. We derive the means-square-error minimizing weight parameter for GGLR efficiently, trading off bias and variance of the signal estimate. Experimental results show that GGLR outperformed previous graph signal priors like GLR and graph total variation (GTV) in a range of graph signal restoration tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神勇馒头完成签到,获得积分10
3秒前
cccccl发布了新的文献求助10
4秒前
自觉妖妖发布了新的文献求助10
4秒前
4秒前
阿德里亚诺完成签到,获得积分10
5秒前
在水一方应助酷炫迎波采纳,获得10
7秒前
英姑应助吴亦凡女朋友采纳,获得10
7秒前
乐乐应助壹君采纳,获得10
7秒前
王子安应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
研友_VZG7GZ应助lzx采纳,获得10
9秒前
NexusExplorer应助678采纳,获得10
9秒前
自然秋柳完成签到 ,获得积分10
9秒前
汉堡包应助迷l采纳,获得10
13秒前
ccer发布了新的文献求助10
13秒前
seven发布了新的文献求助10
14秒前
科目三应助678采纳,获得10
16秒前
17秒前
17秒前
18秒前
Christina完成签到,获得积分10
19秒前
abocide完成签到,获得积分10
19秒前
斯文败类应助壮观的向雁采纳,获得10
20秒前
田様应助克罗地亚哇咔咔采纳,获得10
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111