Clinical human activity recognition based on a wearable patch of combined tri-axial ACC and ECG sensors

可穿戴计算机 人工智能 医学 计算机科学 深度学习 模式识别(心理学) 语音识别 嵌入式系统
作者
Yanling Ren,Minqi Liu,Ying Yang,Ling Mao,Kai Chen
出处
期刊:Digital health [SAGE]
卷期号:10: 20552076231223804-20552076231223804 被引量:6
标识
DOI:10.1177/20552076231223804
摘要

Background In digital medicine, human activity recognition (HAR) can be used to track and assess a patient's progress throughout rehabilitation, enhancing the quality of life for the elderly and the disabled. Methods A patch-type flexible sensor that integrated dynamic electrocardiogram (ECG) and acceleration signal (ACC) was used to record the signals of the various behavioral activities of 20 healthy volunteers and 25 patients with pneumoconiosis. Seven HAR tasks were then carried out on the data using four different deep learning methods (CNN, LSTM, CNN–LSTM and GRU). Results When ECG and ACC were obtained simultaneously, the overall accuracy rates of HAR for healthy group were 0.9371, 0.8829, 0.9843 and 0.9486 by the CNN, LSTM, CNN–LSTM and GRU models, respectively. In contrast, the overall accuracy rates of HAR for the pneumoconiosis patients’ group were 0.8850, 0.7975, 0.9425 and 0.8525 by the four corresponding models. The accuracy of HAR for both groups using all four models is higher than when only ACC signal is detected. Conclusion The addition of the ECG signal significantly improves HAR outcomes in the group of healthy individuals, while having relatively less enhancing effects on the group of patients with pneumoconiosis. When ECG and ACC signals were combined, the increase in HAR accuracy was notable compared to cases where no ECG data was provided. These results suggest that the combination of ACC and ECG data can represent a novel method for the clinical application of HAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
罗程翔完成签到,获得积分10
1秒前
晴天完成签到,获得积分10
1秒前
1秒前
wu完成签到,获得积分20
1秒前
1秒前
雅琳完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
zpctx应助李西瓜采纳,获得20
3秒前
林林林完成签到,获得积分10
3秒前
3秒前
3秒前
Akim应助小鑫采纳,获得10
3秒前
小雨完成签到 ,获得积分10
4秒前
燃燃发布了新的文献求助10
4秒前
高贵紫丝发布了新的文献求助10
4秒前
4秒前
4秒前
Xxjj完成签到,获得积分10
5秒前
5秒前
李禾和完成签到,获得积分10
5秒前
取个名儿吧完成签到,获得积分10
5秒前
骆驼顶顶完成签到,获得积分10
5秒前
轻舞飞扬发布了新的文献求助10
6秒前
6秒前
拼搏的笑发布了新的文献求助10
6秒前
6秒前
lulu发布了新的文献求助10
6秒前
6秒前
恩典发布了新的文献求助10
7秒前
Cecilia完成签到,获得积分10
8秒前
壮壮发布了新的文献求助10
8秒前
Owen应助默默戎采纳,获得10
8秒前
8秒前
学术小菜鸟完成签到,获得积分10
8秒前
韩谷子完成签到 ,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055