亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical human activity recognition based on a wearable patch of combined tri-axial ACC and ECG sensors

可穿戴计算机 人工智能 医学 计算机科学 深度学习 模式识别(心理学) 语音识别 嵌入式系统
作者
Yanling Ren,Minqi Liu,Ying Yang,Ling Mao,Kai Chen
出处
期刊:Digital health [SAGE]
卷期号:10: 20552076231223804-20552076231223804 被引量:6
标识
DOI:10.1177/20552076231223804
摘要

Background In digital medicine, human activity recognition (HAR) can be used to track and assess a patient's progress throughout rehabilitation, enhancing the quality of life for the elderly and the disabled. Methods A patch-type flexible sensor that integrated dynamic electrocardiogram (ECG) and acceleration signal (ACC) was used to record the signals of the various behavioral activities of 20 healthy volunteers and 25 patients with pneumoconiosis. Seven HAR tasks were then carried out on the data using four different deep learning methods (CNN, LSTM, CNN–LSTM and GRU). Results When ECG and ACC were obtained simultaneously, the overall accuracy rates of HAR for healthy group were 0.9371, 0.8829, 0.9843 and 0.9486 by the CNN, LSTM, CNN–LSTM and GRU models, respectively. In contrast, the overall accuracy rates of HAR for the pneumoconiosis patients’ group were 0.8850, 0.7975, 0.9425 and 0.8525 by the four corresponding models. The accuracy of HAR for both groups using all four models is higher than when only ACC signal is detected. Conclusion The addition of the ECG signal significantly improves HAR outcomes in the group of healthy individuals, while having relatively less enhancing effects on the group of patients with pneumoconiosis. When ECG and ACC signals were combined, the increase in HAR accuracy was notable compared to cases where no ECG data was provided. These results suggest that the combination of ACC and ECG data can represent a novel method for the clinical application of HAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tracyzhang完成签到 ,获得积分10
刚刚
佩奇完成签到,获得积分10
2秒前
所所应助Lilyan采纳,获得10
3秒前
9秒前
10秒前
科研通AI2S应助迪迪采纳,获得10
10秒前
积极鸵鸟完成签到,获得积分10
12秒前
13秒前
14秒前
水牛完成签到,获得积分10
15秒前
zrm完成签到,获得积分10
17秒前
17秒前
万能图书馆应助杭三问采纳,获得10
20秒前
坦率的义晶完成签到,获得积分10
20秒前
light完成签到,获得积分10
22秒前
WebCasa发布了新的文献求助100
23秒前
希望天下0贩的0应助123采纳,获得10
23秒前
崔灿完成签到 ,获得积分10
31秒前
yyyyyy完成签到 ,获得积分10
31秒前
VDC完成签到,获得积分0
33秒前
大个应助Anxietymaker采纳,获得10
34秒前
ztl完成签到 ,获得积分10
36秒前
36秒前
37秒前
38秒前
斯文败类应助务实的访卉采纳,获得10
39秒前
39秒前
Lilyan发布了新的文献求助10
40秒前
VDC发布了新的文献求助10
41秒前
赘婿应助123采纳,获得10
41秒前
YJ发布了新的文献求助10
46秒前
Tangwz完成签到,获得积分10
47秒前
虚心的不二完成签到 ,获得积分10
49秒前
映冬完成签到 ,获得积分10
50秒前
51秒前
Anxietymaker发布了新的文献求助10
54秒前
彭于晏应助123采纳,获得10
56秒前
Marciu33发布了新的文献求助10
1分钟前
在学海中挣扎完成签到 ,获得积分10
1分钟前
动听的秋白完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657768
求助须知:如何正确求助?哪些是违规求助? 4812247
关于积分的说明 15080301
捐赠科研通 4815972
什么是DOI,文献DOI怎么找? 2577008
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490548