Clinical human activity recognition based on a wearable patch of combined tri-axial ACC and ECG sensors

可穿戴计算机 人工智能 医学 计算机科学 深度学习 模式识别(心理学) 语音识别 嵌入式系统
作者
Yanling Ren,Minqi Liu,Ying Yang,Ling Mao,Kai Chen
出处
期刊:Digital health [SAGE]
卷期号:10: 20552076231223804-20552076231223804 被引量:6
标识
DOI:10.1177/20552076231223804
摘要

Background In digital medicine, human activity recognition (HAR) can be used to track and assess a patient's progress throughout rehabilitation, enhancing the quality of life for the elderly and the disabled. Methods A patch-type flexible sensor that integrated dynamic electrocardiogram (ECG) and acceleration signal (ACC) was used to record the signals of the various behavioral activities of 20 healthy volunteers and 25 patients with pneumoconiosis. Seven HAR tasks were then carried out on the data using four different deep learning methods (CNN, LSTM, CNN–LSTM and GRU). Results When ECG and ACC were obtained simultaneously, the overall accuracy rates of HAR for healthy group were 0.9371, 0.8829, 0.9843 and 0.9486 by the CNN, LSTM, CNN–LSTM and GRU models, respectively. In contrast, the overall accuracy rates of HAR for the pneumoconiosis patients’ group were 0.8850, 0.7975, 0.9425 and 0.8525 by the four corresponding models. The accuracy of HAR for both groups using all four models is higher than when only ACC signal is detected. Conclusion The addition of the ECG signal significantly improves HAR outcomes in the group of healthy individuals, while having relatively less enhancing effects on the group of patients with pneumoconiosis. When ECG and ACC signals were combined, the increase in HAR accuracy was notable compared to cases where no ECG data was provided. These results suggest that the combination of ACC and ECG data can represent a novel method for the clinical application of HAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
1秒前
qiiq1997完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
xingdianwei发布了新的文献求助10
4秒前
4秒前
5秒前
xmj完成签到,获得积分10
5秒前
oRANGE发布了新的文献求助20
6秒前
乌苏苏发布了新的文献求助10
6秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
南桥完成签到,获得积分10
6秒前
8秒前
一牧牧完成签到,获得积分10
8秒前
Janiuh发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
1111发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
深情安青应助清飞采纳,获得10
10秒前
11秒前
画檐蛛网发布了新的文献求助10
11秒前
defu完成签到,获得积分10
11秒前
蒸馏水发布了新的文献求助10
12秒前
zjh11143发布了新的文献求助20
13秒前
SciGPT应助Ethereal采纳,获得10
13秒前
俭朴从寒发布了新的文献求助10
14秒前
14秒前
14秒前
橘子完成签到,获得积分10
14秒前
tao发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624