A coarse-to-fine adaptive spatial–temporal graph convolution network with residuals for motor imagery decoding from the same limb

计算机科学 解码方法 模式识别(心理学) 图形 人工智能 卷积(计算机科学) 算法 人工神经网络 理论计算机科学
作者
Lei Zhu,Jie Yuan,Aiai Huang,Jianhai Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105885-105885
标识
DOI:10.1016/j.bspc.2023.105885
摘要

In the field of Brain Computer Interface (BCI) technology, Motor Imagery (MI) plays an important role as a paradigm. One of the primary focuses of this research area lies in exploring the MI of various upper limbs. Decoding MI signals from distinct joints within the same limb poses more intricate challenges in comparison to decoding MI signals originating from different upper limbs. In order to explore more efficient decoding methods, we propose a novel coarse-to-fine classification approach to investigate categorical decoding across three tasks, namely 'rest', 'hand', and 'elbow'. This approach consists of two classification stages performed from coarse to fine. In the coarse classification stage, in order to capture the features of both resting state and the moving state in the temporal domain, the EEGNet network with temporal domain convolution is used to extract temporal domain features and classify the original samples into categories of 'rest' and 'move' ('hand', 'elbow'). In the fine classification stage, the samples of 'move' category are segmented by time to form a graph sequence. Then, an adaptive spatial–temporal graph convolutional network with residuals is utilized to extract both temporal and spatial domains' features from the graph sequence. The proposed algorithm has been validated experimentally on the MI-2 dataset and compared with contemporary methods. Its classification performance is quantified by the average accuracy which achieves a value of 72.21%. Extensive experimental results indicate that the novel coarse-to-fine classification approach is superior to the single classification approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃泡芙发布了新的文献求助10
刚刚
susu完成签到,获得积分10
2秒前
会神发布了新的文献求助10
2秒前
KK完成签到,获得积分10
3秒前
充电宝应助justin采纳,获得10
5秒前
6秒前
Ch完成签到 ,获得积分10
7秒前
9秒前
ajun完成签到,获得积分10
9秒前
9秒前
春江完成签到,获得积分10
9秒前
9秒前
漂亮的松思完成签到,获得积分20
12秒前
12秒前
xiuwen发布了新的文献求助10
13秒前
黑衣人的秘密完成签到,获得积分10
13秒前
13秒前
mushrooms119完成签到,获得积分10
14秒前
14秒前
榨菜发布了新的文献求助10
14秒前
Cindy应助体贴的夕阳采纳,获得10
14秒前
MEME完成签到,获得积分10
15秒前
zfzf0422发布了新的文献求助10
15秒前
15秒前
健忘曼云发布了新的文献求助10
15秒前
drift完成签到,获得积分10
16秒前
16秒前
安谢完成签到,获得积分10
17秒前
852应助小张采纳,获得10
18秒前
活泼的飞双完成签到,获得积分10
19秒前
热情的板栗完成签到,获得积分10
19秒前
20秒前
Loooong应助汤姆采纳,获得10
20秒前
淡定雁开发布了新的文献求助10
20秒前
tianny发布了新的文献求助10
20秒前
111111111发布了新的文献求助10
21秒前
Mian发布了新的文献求助10
21秒前
21秒前
xiuwen完成签到,获得积分10
22秒前
TOMORI酱完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808