A coarse-to-fine adaptive spatial–temporal graph convolution network with residuals for motor imagery decoding from the same limb

计算机科学 解码方法 模式识别(心理学) 图形 人工智能 卷积(计算机科学) 算法 人工神经网络 理论计算机科学
作者
Lei Zhu,Jie Yuan,Aiai Huang,Jianhai Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105885-105885
标识
DOI:10.1016/j.bspc.2023.105885
摘要

In the field of Brain Computer Interface (BCI) technology, Motor Imagery (MI) plays an important role as a paradigm. One of the primary focuses of this research area lies in exploring the MI of various upper limbs. Decoding MI signals from distinct joints within the same limb poses more intricate challenges in comparison to decoding MI signals originating from different upper limbs. In order to explore more efficient decoding methods, we propose a novel coarse-to-fine classification approach to investigate categorical decoding across three tasks, namely 'rest', 'hand', and 'elbow'. This approach consists of two classification stages performed from coarse to fine. In the coarse classification stage, in order to capture the features of both resting state and the moving state in the temporal domain, the EEGNet network with temporal domain convolution is used to extract temporal domain features and classify the original samples into categories of 'rest' and 'move' ('hand', 'elbow'). In the fine classification stage, the samples of 'move' category are segmented by time to form a graph sequence. Then, an adaptive spatial–temporal graph convolutional network with residuals is utilized to extract both temporal and spatial domains' features from the graph sequence. The proposed algorithm has been validated experimentally on the MI-2 dataset and compared with contemporary methods. Its classification performance is quantified by the average accuracy which achieves a value of 72.21%. Extensive experimental results indicate that the novel coarse-to-fine classification approach is superior to the single classification approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的沂完成签到,获得积分20
1秒前
1秒前
sjie发布了新的文献求助30
2秒前
3秒前
M旭旭发布了新的文献求助10
4秒前
张成协发布了新的文献求助10
4秒前
胥钦凤发布了新的文献求助10
5秒前
7秒前
kumo完成签到 ,获得积分10
7秒前
汉堡包应助风中的金鱼采纳,获得10
7秒前
7秒前
chengmeng完成签到,获得积分10
7秒前
9秒前
M旭旭完成签到,获得积分10
10秒前
11秒前
冷艳万天发布了新的文献求助10
11秒前
猪猪hero发布了新的文献求助10
12秒前
12秒前
青松关注了科研通微信公众号
13秒前
cece完成签到,获得积分10
14秒前
认真沅完成签到,获得积分10
14秒前
Nichols完成签到,获得积分10
16秒前
xzh发布了新的文献求助10
16秒前
16秒前
也胖完成签到 ,获得积分10
19秒前
Dada应助闪闪的从彤采纳,获得30
21秒前
舒适的淇发布了新的文献求助10
21秒前
21秒前
22秒前
星辰大海应助shark采纳,获得10
23秒前
24秒前
123发布了新的文献求助10
25秒前
25秒前
26秒前
SciGPT应助fugdu采纳,获得10
29秒前
29秒前
yiqifan完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
陈晨发布了新的文献求助10
31秒前
梁凯华完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511