反应性(心理学)
化学
反应速率常数
电子转移
反作用坐标
化学物理
电子
反应机理
马库斯理论
激发
从头算
反应动力学
分子动力学
溶剂
计算化学
反应速率
物理化学
分子
动力学
物理
催化作用
有机化学
量子力学
医学
替代医学
病理
作者
Pauf Neupane,David M. Bartels,Ward H. Thompson
标识
DOI:10.1021/acs.jpcb.3c06935
摘要
Many questions remain about the reactions of the hydrated electron despite decades of study. Of particular note is that they do not appear to follow the Marcus theory of electron transfer reactions, a feature that is yet to be explained. To investigate these issues, we used ab initio molecular dynamics (AIMD) simulations to investigate one of the better studied reactions, the hydrated electron reduction of CO2. The rate constant for the hydrated electron–CO2 reaction complex to react to form CO2– is for the first time estimated from AIMD simulations. Results at 298 and 373 K show the rate constant is insensitive to temperature, consistent with the low measured activation energy for the reaction, and the implications of this behavior are examined. The sampling provided by the simulations yields insight into the reaction mechanism. The reaction is found to involve both solvent reorganization and changes in the carbon dioxide structure. The latter leads to significant vibrational excitation of the bending and symmetric stretch vibrations in the CO2– product, indicating the reaction is vibrationally nonadiabatic. The former is estimated from the calculation of an approximate collective solvent coordinate and the free energy in this coordinate is determined. These results indicate that AIMD simulations can reasonably estimate hydrated electron reaction activation energies and provide new insight into the mechanism that can help illuminate the features of this unusual chemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI